Data Structures | |
struct | EFI_TIME |
struct | EFI_IPv4_ADDRESS |
struct | EFI_IPv6_ADDRESS |
struct | EFI_MAC_ADDRESS |
union | EFI_IP_ADDRESS |
Defines | |
#define | EFIERR(_a) ENCODE_ERROR(_a) |
#define | EFI_ERROR(A) RETURN_ERROR(A) |
#define | EFI_PAGE_SIZE SIZE_4KB |
#define | EFI_PAGE_MASK 0xFFF |
#define | EFI_PAGE_SHIFT 12 |
#define | EFI_SIZE_TO_PAGES(Size) (((Size) >> EFI_PAGE_SHIFT) + (((Size) & EFI_PAGE_MASK) ? 1 : 0)) |
#define | EFI_PAGES_TO_SIZE(Pages) ((Pages) << EFI_PAGE_SHIFT) |
#define | EFI_IMAGE_MACHINE_IA32 0x014C |
#define | EFI_IMAGE_MACHINE_IA64 0x0200 |
#define | EFI_IMAGE_MACHINE_EBC 0x0EBC |
#define | EFI_IMAGE_MACHINE_X64 0x8664 |
#define | EFI_IMAGE_MACHINE_ARMTHUMB_MIXED 0x01C2 |
#define | EFI_IMAGE_MACHINE_AARCH64 0xAA64 |
#define | EFI_IMAGE_MACHINE_TYPE_SUPPORTED(Machine) (((Machine) == EFI_IMAGE_MACHINE_IA32) || ((Machine) == EFI_IMAGE_MACHINE_EBC)) |
#define | EFI_IMAGE_MACHINE_CROSS_TYPE_SUPPORTED(Machine) ((Machine) == EFI_IMAGE_MACHINE_X64) |
#define | EFI_SUCCESS RETURN_SUCCESS |
#define | EFI_LOAD_ERROR RETURN_LOAD_ERROR |
#define | EFI_INVALID_PARAMETER RETURN_INVALID_PARAMETER |
#define | EFI_UNSUPPORTED RETURN_UNSUPPORTED |
#define | EFI_BAD_BUFFER_SIZE RETURN_BAD_BUFFER_SIZE |
#define | EFI_BUFFER_TOO_SMALL RETURN_BUFFER_TOO_SMALL |
#define | EFI_NOT_READY RETURN_NOT_READY |
#define | EFI_DEVICE_ERROR RETURN_DEVICE_ERROR |
#define | EFI_WRITE_PROTECTED RETURN_WRITE_PROTECTED |
#define | EFI_OUT_OF_RESOURCES RETURN_OUT_OF_RESOURCES |
#define | EFI_VOLUME_CORRUPTED RETURN_VOLUME_CORRUPTED |
#define | EFI_VOLUME_FULL RETURN_VOLUME_FULL |
#define | EFI_NO_MEDIA RETURN_NO_MEDIA |
#define | EFI_MEDIA_CHANGED RETURN_MEDIA_CHANGED |
#define | EFI_NOT_FOUND RETURN_NOT_FOUND |
#define | EFI_ACCESS_DENIED RETURN_ACCESS_DENIED |
#define | EFI_NO_RESPONSE RETURN_NO_RESPONSE |
#define | EFI_NO_MAPPING RETURN_NO_MAPPING |
#define | EFI_TIMEOUT RETURN_TIMEOUT |
#define | EFI_NOT_STARTED RETURN_NOT_STARTED |
#define | EFI_ALREADY_STARTED RETURN_ALREADY_STARTED |
#define | EFI_ABORTED RETURN_ABORTED |
#define | EFI_ICMP_ERROR RETURN_ICMP_ERROR |
#define | EFI_TFTP_ERROR RETURN_TFTP_ERROR |
#define | EFI_PROTOCOL_ERROR RETURN_PROTOCOL_ERROR |
#define | EFI_INCOMPATIBLE_VERSION RETURN_INCOMPATIBLE_VERSION |
#define | EFI_SECURITY_VIOLATION RETURN_SECURITY_VIOLATION |
#define | EFI_CRC_ERROR RETURN_CRC_ERROR |
#define | EFI_END_OF_MEDIA RETURN_END_OF_MEDIA |
#define | EFI_END_OF_FILE RETURN_END_OF_FILE |
#define | EFI_INVALID_LANGUAGE RETURN_INVALID_LANGUAGE |
#define | EFI_COMPROMISED_DATA RETURN_COMPROMISED_DATA |
#define | EFI_WARN_UNKNOWN_GLYPH RETURN_WARN_UNKNOWN_GLYPH |
#define | EFI_WARN_DELETE_FAILURE RETURN_WARN_DELETE_FAILURE |
#define | EFI_WARN_WRITE_FAILURE RETURN_WARN_WRITE_FAILURE |
#define | EFI_WARN_BUFFER_TOO_SMALL RETURN_WARN_BUFFER_TOO_SMALL |
#define | EFI_WARN_STALE_DATA RETURN_WARN_STALE_DATA |
#define | EFI_NETWORK_UNREACHABLE EFIERR(100) |
#define | EFI_HOST_UNREACHABLE EFIERR(101) |
#define | EFI_PROTOCOL_UNREACHABLE EFIERR(102) |
#define | EFI_PORT_UNREACHABLE EFIERR(103) |
#define | EFI_CONNECTION_FIN EFIERR(104) |
#define | EFI_CONNECTION_RESET EFIERR(105) |
#define | EFI_CONNECTION_REFUSED EFIERR(106) |
Typedefs | |
typedef GUID | EFI_GUID |
typedef RETURN_STATUS | EFI_STATUS |
typedef VOID * | EFI_HANDLE |
typedef VOID * | EFI_EVENT |
typedef UINTN | EFI_TPL |
typedef UINT64 | EFI_LBA |
typedef UINT64 | EFI_PHYSICAL_ADDRESS |
typedef UINT64 | EFI_VIRTUAL_ADDRESS |
Copyright (c) 2006 - 2011, Intel Corporation. All rights reserved.
Portions copyright (c) 2011 - 2013, ARM Ltd. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License that accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#define EFI_ABORTED RETURN_ABORTED |
Enumeration of EFI_STATUS.
#define EFI_ACCESS_DENIED RETURN_ACCESS_DENIED |
Enumeration of EFI_STATUS.
#define EFI_ALREADY_STARTED RETURN_ALREADY_STARTED |
Enumeration of EFI_STATUS.
#define EFI_BAD_BUFFER_SIZE RETURN_BAD_BUFFER_SIZE |
Enumeration of EFI_STATUS.
#define EFI_BUFFER_TOO_SMALL RETURN_BUFFER_TOO_SMALL |
Enumeration of EFI_STATUS.
#define EFI_COMPROMISED_DATA RETURN_COMPROMISED_DATA |
Enumeration of EFI_STATUS.
#define EFI_CONNECTION_FIN EFIERR(104) |
Tcp connection status definitions
#define EFI_CONNECTION_REFUSED EFIERR(106) |
Tcp connection status definitions
#define EFI_CONNECTION_RESET EFIERR(105) |
Tcp connection status definitions
#define EFI_CRC_ERROR RETURN_CRC_ERROR |
Enumeration of EFI_STATUS.
#define EFI_DEVICE_ERROR RETURN_DEVICE_ERROR |
Enumeration of EFI_STATUS.
#define EFI_END_OF_FILE RETURN_END_OF_FILE |
Enumeration of EFI_STATUS.
#define EFI_END_OF_MEDIA RETURN_END_OF_MEDIA |
Enumeration of EFI_STATUS.
#define EFI_ERROR | ( | A | ) | RETURN_ERROR(A) |
#define EFI_HOST_UNREACHABLE EFIERR(101) |
ICMP error definitions
#define EFI_ICMP_ERROR RETURN_ICMP_ERROR |
Enumeration of EFI_STATUS.
#define EFI_IMAGE_MACHINE_AARCH64 0xAA64 |
PE32+ Machine type for AARCH64 A64 images.
#define EFI_IMAGE_MACHINE_ARMTHUMB_MIXED 0x01C2 |
PE32+ Machine type for ARM mixed ARM and Thumb/Thumb2 images.
#define EFI_IMAGE_MACHINE_CROSS_TYPE_SUPPORTED | ( | Machine | ) | ((Machine) == EFI_IMAGE_MACHINE_X64) |
#define EFI_IMAGE_MACHINE_EBC 0x0EBC |
PE32+ Machine type for EBC UEFI images.
#define EFI_IMAGE_MACHINE_IA32 0x014C |
PE32+ Machine type for IA32 UEFI images.
#define EFI_IMAGE_MACHINE_IA64 0x0200 |
PE32+ Machine type for IA64 UEFI images.
#define EFI_IMAGE_MACHINE_TYPE_SUPPORTED | ( | Machine | ) | (((Machine) == EFI_IMAGE_MACHINE_IA32) || ((Machine) == EFI_IMAGE_MACHINE_EBC)) |
#define EFI_IMAGE_MACHINE_X64 0x8664 |
PE32+ Machine type for X64 UEFI images.
#define EFI_INCOMPATIBLE_VERSION RETURN_INCOMPATIBLE_VERSION |
Enumeration of EFI_STATUS.
#define EFI_INVALID_LANGUAGE RETURN_INVALID_LANGUAGE |
Enumeration of EFI_STATUS.
#define EFI_INVALID_PARAMETER RETURN_INVALID_PARAMETER |
Enumeration of EFI_STATUS.
#define EFI_LOAD_ERROR RETURN_LOAD_ERROR |
Enumeration of EFI_STATUS.
#define EFI_MEDIA_CHANGED RETURN_MEDIA_CHANGED |
Enumeration of EFI_STATUS.
#define EFI_NETWORK_UNREACHABLE EFIERR(100) |
ICMP error definitions
#define EFI_NO_MAPPING RETURN_NO_MAPPING |
Enumeration of EFI_STATUS.
#define EFI_NO_MEDIA RETURN_NO_MEDIA |
Enumeration of EFI_STATUS.
#define EFI_NO_RESPONSE RETURN_NO_RESPONSE |
Enumeration of EFI_STATUS.
#define EFI_NOT_FOUND RETURN_NOT_FOUND |
Enumeration of EFI_STATUS.
#define EFI_NOT_READY RETURN_NOT_READY |
Enumeration of EFI_STATUS.
#define EFI_NOT_STARTED RETURN_NOT_STARTED |
Enumeration of EFI_STATUS.
#define EFI_OUT_OF_RESOURCES RETURN_OUT_OF_RESOURCES |
Enumeration of EFI_STATUS.
#define EFI_PAGE_MASK 0xFFF |
#define EFI_PAGE_SHIFT 12 |
#define EFI_PAGE_SIZE SIZE_4KB |
#define EFI_PAGES_TO_SIZE | ( | Pages | ) | ((Pages) << EFI_PAGE_SHIFT) |
Macro that converts a number of EFI_PAGEs to a size in bytes.
Pages | The number of EFI_PAGES. This parameter is assumed to be type UINTN. Passing in a parameter that is larger than UINTN may produce unexpected results. |
#define EFI_PORT_UNREACHABLE EFIERR(103) |
ICMP error definitions
#define EFI_PROTOCOL_ERROR RETURN_PROTOCOL_ERROR |
Enumeration of EFI_STATUS.
#define EFI_PROTOCOL_UNREACHABLE EFIERR(102) |
ICMP error definitions
#define EFI_SECURITY_VIOLATION RETURN_SECURITY_VIOLATION |
Enumeration of EFI_STATUS.
#define EFI_SIZE_TO_PAGES | ( | Size | ) | (((Size) >> EFI_PAGE_SHIFT) + (((Size) & EFI_PAGE_MASK) ? 1 : 0)) |
Macro that converts a size, in bytes, to a number of EFI_PAGESs.
Size | A size in bytes. This parameter is assumed to be type UINTN. Passing in a parameter that is larger than UINTN may produce unexpected results. |
#define EFI_SUCCESS RETURN_SUCCESS |
Enumeration of EFI_STATUS.
#define EFI_TFTP_ERROR RETURN_TFTP_ERROR |
Enumeration of EFI_STATUS.
#define EFI_TIMEOUT RETURN_TIMEOUT |
Enumeration of EFI_STATUS.
#define EFI_UNSUPPORTED RETURN_UNSUPPORTED |
Enumeration of EFI_STATUS.
#define EFI_VOLUME_CORRUPTED RETURN_VOLUME_CORRUPTED |
Enumeration of EFI_STATUS.
#define EFI_VOLUME_FULL RETURN_VOLUME_FULL |
Enumeration of EFI_STATUS.
#define EFI_WARN_BUFFER_TOO_SMALL RETURN_WARN_BUFFER_TOO_SMALL |
Enumeration of EFI_STATUS.
#define EFI_WARN_DELETE_FAILURE RETURN_WARN_DELETE_FAILURE |
Enumeration of EFI_STATUS.
#define EFI_WARN_STALE_DATA RETURN_WARN_STALE_DATA |
Enumeration of EFI_STATUS.
#define EFI_WARN_UNKNOWN_GLYPH RETURN_WARN_UNKNOWN_GLYPH |
Enumeration of EFI_STATUS.
#define EFI_WARN_WRITE_FAILURE RETURN_WARN_WRITE_FAILURE |
Enumeration of EFI_STATUS.
#define EFI_WRITE_PROTECTED RETURN_WRITE_PROTECTED |
Enumeration of EFI_STATUS.
#define EFIERR | ( | _a | ) | ENCODE_ERROR(_a) |
Define macro to encode the status code.
typedef VOID* EFI_EVENT |
Handle to an event structure.
typedef VOID* EFI_HANDLE |
A collection of related interfaces.
typedef UINT64 EFI_PHYSICAL_ADDRESS |
64-bit physical memory address.
typedef EFI_STATUS |
Function return status for EFI API.
The GraphicsPpiGetMode returns the mode information supported by the Graphics PEI Module.
[in,out] | Mode | Pointer to EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE data. |
EFI_SUCCESS | Valid mode information was returned. | |
EFI_INVALID_PARAMETER | The Mode parameter is not valid. | |
EFI_DEVICE_ERROR | A hardware error occurred trying to retrieve the video mode. | |
EFI_NOT_READY | The Graphics Initialization is not competed and Mode information is not yet available.The platform code should call this again after the Graphics initialization is done. |
This | Pointer to an EFI_PEI_I2C_MASTER_PPI structure. |
EFI_SUCCESS | The reset completed successfully. | |
EFI_DEVICE_ERROR | The reset operation failed. |
This | Pointer to an EFI_PEI_I2C_MASTER_PPI structure. | |
SlaveAddress | Address of the device on the I2C bus. Set the I2C_ADDRESSING_10_BIT when using 10-bit addresses, clear this bit for 7-bit addressing. Bits 0-6 are used for 7-bit I2C slave addresses and bits 0-9 are used for 10-bit I2C slave addresses. | |
RequestPacket | Pointer to an EFI_I2C_REQUEST_PACKET structure describing the I2C transaction. |
EFI_SUCCESS | The transaction completed successfully. | |
EFI_BAD_BUFFER_SIZE | The RequestPacket->LengthInBytes value is too large. | |
EFI_DEVICE_ERROR | There was an I2C error (NACK) during the transaction. | |
EFI_INVALID_PARAMETER | RequestPacket is NULL | |
EFI_NO_RESPONSE | The I2C device is not responding to the slave address. EFI_DEVICE_ERROR will be returned if the controller cannot distinguish when the NACK occurred. | |
EFI_NOT_FOUND | Reserved bit set in the SlaveAddress parameter | |
EFI_OUT_OF_RESOURCES | Insufficient memory for I2C transaction | |
EFI_UNSUPPORTED | The controller does not support the requested transaction. |
This function closes a previously opened I/O aperture handle. If there are no more I/O aperture handles that refer to the hardware I/O aperture resource, then the hardware I/O aperture is closed. It may be possible that a single hardware aperture may be used for more than one device. This function tracks the number of times that each aperture is referenced, and does not close the hardware aperture (via CloseIoAperture()) until there are no more references to it.
This | A pointer to this instance of the EFI_ISA_HC_PPI. | |
IoApertureHandle | The I/O aperture handle previously returned from a call to OpenIoAperture(). |
EFI_SUCCESS | The I/O aperture was closed successfully. |
[in] | PeiServices | An indirect pointer to the PEI Services Table published by the PEI Foundation. |
[in] | This | Pointer to this instance of the PPI. |
[in] | ProcessorNumber | Pointer to the total number of logical processors in the system, including the BSP and disabled APs. |
[out] | ProcessorInfoBuffer | Number of processors in the system that are enabled. |
EFI_SUCCESS | Processor information was returned. | |
EFI_DEVICE_ERROR | The calling processor is an AP. | |
EFI_INVALID_PARAMETER | ProcessorInfoBuffer is NULL. | |
EFI_NOT_FOUND | The processor with the handle specified by ProcessorNumber does not exist in the platform. |
[in] | PeiServices | An indirect pointer to the PEI Services Table published by the PEI Foundation. |
[in] | This | A pointer to the EFI_PEI_MP_SERVICES_PPI instance. |
[in] | Procedure | A pointer to the function to be run on enabled APs of the system. |
[in] | SingleThread | If TRUE, then all the enabled APs execute the function specified by Procedure one by one, in ascending order of processor handle number. If FALSE, then all the enabled APs execute the function specified by Procedure simultaneously. |
[in] | TimeoutInMicroSeconds | Indicates the time limit in microseconds for APs to return from Procedure, for blocking mode only. Zero means infinity. If the timeout expires before all APs return from Procedure, then Procedure on the failed APs is terminated. All enabled APs are available for next function assigned by EFI_PEI_MP_SERVICES_PPI.StartupAllAPs() or EFI_PEI_MP_SERVICES_PPI.StartupThisAP(). If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT. |
[in] | ProcedureArgument | The parameter passed into Procedure for all APs. |
EFI_SUCCESS | In blocking mode, all APs have finished before the timeout expired. | |
EFI_DEVICE_ERROR | Caller processor is AP. | |
EFI_NOT_STARTED | No enabled APs exist in the system. | |
EFI_NOT_READY | Any enabled APs are busy. | |
EFI_TIMEOUT | In blocking mode, the timeout expired before all enabled APs have finished. | |
EFI_INVALID_PARAMETER | Procedure is NULL. |
[in] | PeiServices | An indirect pointer to the PEI Services Table published by the PEI Foundation. |
[in] | This | A pointer to the EFI_PEI_MP_SERVICES_PPI instance. |
[in] | Procedure | A pointer to the function to be run on enabled APs of the system. |
[in] | ProcessorNumber | The handle number of the AP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_PEI_MP_SERVICES_PPI.GetNumberOfProcessors(). |
[in] | TimeoutInMicroSeconds | Indicates the time limit in microseconds for APs to return from Procedure, for blocking mode only. Zero means infinity. If the timeout expires before all APs return from Procedure, then Procedure on the failed APs is terminated. All enabled APs are available for next function assigned by EFI_PEI_MP_SERVICES_PPI.StartupAllAPs() or EFI_PEI_MP_SERVICES_PPI.StartupThisAP(). If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT. |
[in] | ProcedureArgument | The parameter passed into Procedure for all APs. |
EFI_SUCCESS | In blocking mode, specified AP finished before the timeout expires. | |
EFI_DEVICE_ERROR | The calling processor is an AP. | |
EFI_TIMEOUT | In blocking mode, the timeout expired before the specified AP has finished. | |
EFI_NOT_FOUND | The processor with the handle specified by ProcessorNumber does not exist. | |
EFI_INVALID_PARAMETER | ProcessorNumber specifies the BSP or disabled AP. | |
EFI_INVALID_PARAMETER | Procedure is NULL. |
[in] | PeiServices | An indirect pointer to the PEI Services Table published by the PEI Foundation. |
[in] | This | A pointer to the EFI_PEI_MP_SERVICES_PPI instance. |
[in] | ProcessorNumber | The handle number of the AP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_PEI_MP_SERVICES_PPI.GetNumberOfProcessors(). |
[in] | EnableOldBSP | If TRUE, then the old BSP will be listed as an enabled AP. Otherwise, it will be disabled. |
EFI_SUCCESS | BSP successfully switched. | |
EFI_UNSUPPORTED | Switching the BSP cannot be completed prior to this service returning. | |
EFI_UNSUPPORTED | Switching the BSP is not supported. | |
EFI_SUCCESS | The calling processor is an AP. | |
EFI_NOT_FOUND | The processor with the handle specified by ProcessorNumber does not exist. | |
EFI_INVALID_PARAMETER | ProcessorNumber specifies the current BSP or a disabled AP. | |
EFI_NOT_READY | The specified AP is busy. |
[in] | PeiServices | An indirect pointer to the PEI Services Table published by the PEI Foundation. |
[in] | This | A pointer to the EFI_PEI_MP_SERVICES_PPI instance. |
[in] | ProcessorNumber | The handle number of the AP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_PEI_MP_SERVICES_PPI.GetNumberOfProcessors(). |
[in] | EnableAP | Specifies the new state for the processor for enabled, FALSE for disabled. |
[in] | HealthFlag | If not NULL, a pointer to a value that specifies the new health status of the AP. This flag corresponds to StatusFlag defined in EFI_PEI_MP_SERVICES_PPI.GetProcessorInfo(). Only the PROCESSOR_HEALTH_STATUS_BIT is used. All other bits are ignored. If it is NULL, this parameter is ignored. |
EFI_SUCCESS | The specified AP was enabled or disabled successfully. | |
EFI_UNSUPPORTED | Enabling or disabling an AP cannot be completed prior to this service returning. | |
EFI_UNSUPPORTED | Enabling or disabling an AP is not supported. | |
EFI_DEVICE_ERROR | The calling processor is an AP. | |
EFI_NOT_FOUND | Processor with the handle specified by ProcessorNumber does not exist. | |
EFI_INVALID_PARAMETER | ProcessorNumber specifies the BSP. |
[in] | PeiServices | An indirect pointer to the PEI Services Table published by the PEI Foundation. |
[in] | This | A pointer to the EFI_PEI_MP_SERVICES_PPI instance. |
[out] | ProcessorNumber | The handle number of the AP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_PEI_MP_SERVICES_PPI.GetNumberOfProcessors(). |
EFI_SUCCESS | The current processor handle number was returned in ProcessorNumber. | |
EFI_INVALID_PARAMETER | ProcessorNumber is NULL. |
This includes information such as the type of value the TokenNumber is associated with as well as possible human readable name that is associated with the token.
[in] | Guid | The 128-bit unique value that designates the namespace from which to extract the value. |
[in] | TokenNumber | The PCD token number. |
[out] | PcdInfo | The returned information associated with the requested TokenNumber. |
EFI_SUCCESS | The PCD information was returned successfully | |
EFI_NOT_FOUND | The PCD service could not find the requested token number. |
This function reads the requested number of blocks from the device. All the blocks are read, or an error is returned. If EFI_DEVICE_ERROR, EFI_NO_MEDIA,_or EFI_MEDIA_CHANGED is returned and non-blocking I/O is being used, the Event associated with this request will not be signaled.
[in] | This | Indicates a pointer to the calling context. |
[in] | MediaId | Id of the media, changes every time the media is replaced. |
[in] | Lba | The starting Logical Block Address to read from. |
[in,out] | Token | A pointer to the token associated with the transaction. |
[in] | BufferSize | Size of Buffer, must be a multiple of device block size. |
[out] | Buffer | A pointer to the destination buffer for the data. The caller is responsible for either having implicit or explicit ownership of the buffer. |
EFI_SUCCESS | The read request was queued if Token->Event is not NULL.The data was read correctly from the device if the Token->Event is NULL. | |
EFI_DEVICE_ERROR | The device reported an error while performing the read. | |
EFI_NO_MEDIA | There is no media in the device. | |
EFI_MEDIA_CHANGED | The MediaId is not for the current media. | |
EFI_BAD_BUFFER_SIZE | The BufferSize parameter is not a multiple of the intrinsic block size of the device. | |
EFI_INVALID_PARAMETER | The read request contains LBAs that are not valid, or the buffer is not on proper alignment. | |
EFI_OUT_OF_RESOURCES | The request could not be completed due to a lack of resources. |
This function writes the requested number of blocks to the device. All blocks are written, or an error is returned.If EFI_DEVICE_ERROR, EFI_NO_MEDIA, EFI_WRITE_PROTECTED or EFI_MEDIA_CHANGED is returned and non-blocking I/O is being used, the Event associated with this request will not be signaled.
[in] | This | Indicates a pointer to the calling context. |
[in] | MediaId | The media ID that the write request is for. |
[in] | Lba | The starting logical block address to be written. The caller is responsible for writing to only legitimate locations. |
[in,out] | Token | A pointer to the token associated with the transaction. |
[in] | BufferSize | Size of Buffer, must be a multiple of device block size. |
[in] | Buffer | A pointer to the source buffer for the data. |
EFI_SUCCESS | The write request was queued if Event is not NULL. The data was written correctly to the device if the Event is NULL. | |
EFI_WRITE_PROTECTED | The device can not be written to. | |
EFI_NO_MEDIA | There is no media in the device. | |
EFI_MEDIA_CHNAGED | The MediaId does not matched the current device. | |
EFI_DEVICE_ERROR | The device reported an error while performing the write. | |
EFI_BAD_BUFFER_SIZE | The Buffer was not a multiple of the block size of the device. | |
EFI_INVALID_PARAMETER | The write request contains LBAs that are not valid, or the buffer is not on proper alignment. | |
EFI_OUT_OF_RESOURCES | The request could not be completed due to a lack of resources. |
If EFI_DEVICE_ERROR, EFI_NO_MEDIA,_EFI_WRITE_PROTECTED or EFI_MEDIA_CHANGED is returned and non-blocking I/O is being used, the Event associated with this request will not be signaled.
[in] | This | Indicates a pointer to the calling context. |
[in,out] | Token | A pointer to the token associated with the transaction |
EFI_SUCCESS | The flush request was queued if Event is not NULL. All outstanding data was written correctly to the device if the Event is NULL. | |
EFI_DEVICE_ERROR | The device reported an error while writting back the data. | |
EFI_WRITE_PROTECTED | The device cannot be written to. | |
EFI_NO_MEDIA | There is no media in the device. | |
EFI_MEDIA_CHANGED | The MediaId is not for the current media. | |
EFI_OUT_OF_RESOURCES | The request could not be completed due to a lack of resources. |
The GetCapabilities() function determines whether pre-OS controllable inline crypto is supported by the system for the current disk and, if so, returns the capabilities of the crypto engine.
The caller is responsible for providing the Capabilities structure with a sufficient number of entries.
If the structure is too small, the EFI_BUFFER_TOO_SMALL error code is returned and the CapabilityCount field contains the number of entries needed to contain the capabilities.
[in] | This | Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance. |
[out] | Capabilities | Pointer to the EFI_BLOCK_IO_CRYPTO_CAPABILITIES structure. |
EFI_SUCCESS | The ICI is ready for use. | |
EFI_BUFFER_TOO_SMALL | The Capabilities structure was too small. The number of entries needed is returned in the CapabilityCount field of the structure. | |
EFI_NO_RESPONSE | No response was received from the ICI. | |
EFI_DEVICE_ERROR | An error occurred when attempting to access the ICI. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | Capabilities is NULL. |
The SetConfiguration() function allows the user to set the current configuration of the inline cryptographic interface and should be called before attempting any crypto operations.
This configures the configuration table entries with algorithms, key sizes and keys. Each configured entry can later be referred to by index at the time of storage transaction.
The configuration table index will refer to the combination ofKeyOwnerGuid, Algorithm, and CryptoKey.
KeyOwnerGuid identifies the component taking ownership of the entry. It helps components to identify their own entries, cooperate with other owner components, and avoid conflicts. This Guid identifier is there to help coordination between cooperating components and not a security or synchronization feature. The Nil GUID can be used by a component to release use of entry owned. It is also used to identify potentially available entries (see GetConfiguration).
CryptoKey specifies algorithm-specific key material to use within parameters of selected crypto capability.
This function is called infrequently typically once, on device start, before IO starts. It can be called at later times in cases the number of keysused on the drive is higher than what can be configured at a time or a new key has to be added.
Components setting or changing an entry or entries for a given index or indices must ensure that IO referencing affected indices is temporarily blocked (run-down) at the time of change.
Indices parameters in each parameter table entry allow to set only a portion of the available table entries in the crypto module anywhere from single entry to entire table supported.
If corresponding table entry or entries being set are already in use by another owner the call should be failed and none of the entries should be modified. The interface implementation must enforce atomicity of this operation (should either succeed fully or fail completely without modifying state).
Note that components using GetConfiguration command to discover available entries should be prepared that by the time of calling SetConfiguration the previously available entry may have become occupied. Such components should be prepared to re-try the sequence of operations.
Alternatively EFI_BLOCK_IO_CRYPTO_INDEX_ANY can be used to have the implementation discover and allocate available,if any, indices atomically.
An optional ResultingTable pointer can be provided by the caller to receive the newly configured entries. The array provided by the caller must have at least ConfigurationCount of entries.
[in] | This | Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance. |
[in] | ConfigurationCount | Number of entries being configured with this call. |
[in] | ConfigurationTable | Pointer to a table used to populate the configuration table. |
[out] | ResultingTable | Optional pointer to a table that receives the newly configured entries. |
EFI_SUCCESS | The ICI is ready for use. | |
EFI_NO_RESPONSE | No response was received from the ICI. | |
EFI_DEVICE_ERROR | An error occurred when attempting to access the ICI. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | ConfigurationTable is NULL. | |
EFI_INVALID_PARAMETER | ConfigurationCount is 0. | |
EFI_OUT_OF_RESOURCES | Could not find the requested number of available entries in the configuration table. |
The GetConfiguration() function allows the user to get the configuration of the inline cryptographic interface.
Retrieves, entirely or partially, the currently configured key table. Note that the keys themselves are not retrieved, but rather just indices, owner GUIDs and capabilities.
If fewer entries than specified by ConfigurationCount are returned, the Index field of the unused entries is set to EFI_BLOCK_IO_CRYPTO_INDEX_ANY.
[in] | This | Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance. |
[in] | StartIndex | Configuration table index at which to start the configuration query. |
[in] | ConfigurationCount | Number of entries to return in the response table. |
[in] | KeyOwnerGuid | Optional parameter to filter response down to entries with a given owner. A pointer to the Nil value can be used to return available entries. Set to NULL when no owner filtering is required. |
[out] | ConfigurationTable | Table of configured configuration table entries (with no CryptoKey returned): configuration table index, KeyOwnerGuid, Capability. Should have sufficient space to store up to ConfigurationCount entries. |
EFI_SUCCESS | The ICI is ready for use. | |
EFI_NO_RESPONSE | No response was received from the ICI. | |
EFI_DEVICE_ERROR | An error occurred when attempting to access the ICI. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | Configuration table is NULL. | |
EFI_INVALID_PARAMETER | StartIndex is out of bounds. |
TheReadExtended() function allows the caller to perform a storage device read operation. The function reads the requested number of blocks from the device and then if Index is specified decrypts them inline. All the blocks are read and decrypted (if decryption requested), or an error is returned.
If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not the ID for the current media in the device, the function returns EFI_MEDIA_CHANGED.
If EFI_DEVICE_ERROR, EFI_NO_MEDIA, or EFI_MEDIA_CHANGED is returned and nonblocking I/O is being used, the Event associated with this request will not be signaled.
In addition to standard storage transaction parameters (LBA, IO size, and buffer), this command will also specify a configuration table Index and CryptoIvInput when data has to be decrypted inline by the controller after being read from the storage device. If an Index parameter is not specified, no decryption is performed.
[in] | This | Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance. |
[in] | MediaId | The media ID that the read request is for. |
[in] | LBA | The starting logical block address to read from on the device. |
[in,out] | Token | A pointer to the token associated with the transaction. |
[in] | BufferSize | The size of the Buffer in bytes. This must be a multiple of the intrinsic block size of the device. |
[out] | Buffer | A pointer to the destination buffer for the data. The caller is responsible for either having implicit or explicit ownership of the buffer. |
[in] | Index | A pointer to the configuration table index. This is optional. |
[in] | CryptoIvInput | A pointer to a buffer that contains additional cryptographic parameters as required by the capability referenced by the configuration table index, such as cryptographic initialization vector. |
EFI_SUCCESS | The read request was queued if Token-> Event is not NULL. The data was read correctly from the device if the Token->Event is NULL. | |
EFI_DEVICE_ERROR | The device reported an error while attempting to perform the read operation and/or decryption operation. | |
EFI_NO_MEDIA | There is no media in the device. | |
EFI_MEDIA_CHANGED | The MediaId is not for the current media. | |
EFI_BAD_BUFFER_SIZE | The BufferSize parameter is not a multiple of the intrinsic block size of the device. | |
EFI_INVALID_PARAMETER | This is NULL, or the read request contains LBAs that are not valid, or the buffer is not on proper alignment. | |
EFI_INVALID_PARAMETER | CryptoIvInput is incorrect. | |
EFI_OUT_OF_RESOURCES | The request could not be completed due to a lack of resources. |
The WriteExtended() function allows the caller to perform a storage device write operation. The function encrypts the requested number of blocks inline if Index is specified and then writes them to the device. All the blocks are encrypted (if encryption requested) and written, or an error is returned.
If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not the ID for the current media in the device, the function returns EFI_MEDIA_CHANGED.
If EFI_DEVICE_ERROR, EFI_NO_MEDIA, or EFI_MEDIA_CHANGED is returned and nonblocking I/O is being used, the Event associated with this request will not be signaled.
In addition to standard storage transaction parameters (LBA, IO size, and buffer), this command will also specify a configuration table Index and a CryptoIvInput when data has to be decrypted inline by the controller before being written to the storage device. If no Index parameter is specified, no encryption is performed.
[in] | This | Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance. |
[in] | MediaId | The media ID that the read request is for. |
[in] | LBA | The starting logical block address to read from on the device. |
[in,out] | Token | A pointer to the token associated with the transaction. |
[in] | BufferSize | The size of the Buffer in bytes. This must be a multiple of the intrinsic block size of the device. |
[in] | Buffer | A pointer to the source buffer for the data. |
[in] | Index | A pointer to the configuration table index. This is optional. |
[in] | CryptoIvInput | A pointer to a buffer that contains additional cryptographic parameters as required by the capability referenced by the configuration table index, such as cryptographic initialization vector. |
EFI_SUCCESS | The request to encrypt (optionally) and write was queued if Event is not NULL. The data was encrypted (optionally) and written correctly to the device if the Event is NULL. | |
EFI_WRITE_PROTECTED | The device cannot be written to. | |
EFI_NO_MEDIA | There is no media in the device. | |
EFI_MEDIA_CHANGED | The MediaId is not for the current media. | |
EFI_DEVICE_ERROR | The device reported an error while attempting to encrypt blocks or to perform the write operation. | |
EFI_BAD_BUFFER_SIZE | The BufferSize parameter is not a multiple of the intrinsic block size of the device. | |
EFI_INVALID_PARAMETER | This is NULL, or the write request contains LBAs that are not valid, or the buffer is not on proper alignment. | |
EFI_INVALID_PARAMETER | CryptoIvInput is incorrect. | |
EFI_OUT_OF_RESOURCES | The request could not be completed due to a lack of resources. |
The FlushBlocks() function flushes all modified data to the physical block device. Any modified data that has to be encrypted must have been already encrypted as a part of WriteExtended() operation - inline crypto operation cannot be a part of flush operation.
All data written to the device prior to the flush must be physically written before returning EFI_SUCCESS from this function. This would include any cached data the driver may have cached, and cached data the device may have cached. A flush may cause a read request following the flush to force a device access.
If EFI_DEVICE_ERROR, EFI_NO_MEDIA, EFI_WRITE_PROTECTED or EFI_MEDIA_CHANGED is returned and non-blocking I/O is being used, the Event associated with this request will not be signaled.
[in] | This | Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance. |
[in,out] | Token | A pointer to the token associated with the transaction. |
EFI_SUCCESS | The flush request was queued if Event is not NULL. All outstanding data was written correctly to the device if the Event is NULL. | |
EFI_DEVICE_ERROR | The device reported an error while attempting to write data. | |
EFI_WRITE_PROTECTED | The device cannot be written to. | |
EFI_NO_MEDIA | There is no media in the device. | |
EFI_MEDIA_CHANGED | The MediaId is not for the current media. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_OUT_OF_RESOURCES | The request could not be completed due to a lack of resources. |
This | Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance. | |
IsNewTransfer | If TRUE, a new transfer will be submitted. If FALSE, the request is deleted. | |
PollingInterval | Indicates the periodic rate, in milliseconds, that the transfer is to be executed. | |
DataLength | Specifies the length, in bytes, of the data to be received. | |
Callback | The callback function. This function is called if the asynchronous transfer is completed. | |
Context | Data passed into Callback function. This is optional parameter and may be NULL. |
EFI_SUCCESS | The HCI asynchronous receive request is submitted successfully. | |
EFI_INVALID_PARAMETER | One or more of the following conditions is TRUE:
|
This | Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance. | |
IsNewTransfer | If TRUE, a new transfer will be submitted. If FALSE, the request is deleted. | |
PollingInterval | Indicates the periodic rate, in milliseconds, that the transfer is to be executed. | |
DataLength | Specifies the length, in bytes, of the data to be received. | |
Callback | The callback function. This function is called if the asynchronous transfer is completed. | |
Context | Data passed into Callback function. This is optional parameter and may be NULL. |
EFI_SUCCESS | The HCI asynchronous receive request is submitted successfully. | |
EFI_INVALID_PARAMETER | One or more of the following conditions is TRUE:
|
Data | Data received via asynchronous transfer. | |
DataLength | The length of Data in bytes, received via asynchronous transfer. | |
Context | Context passed from asynchronous transfer request. |
EFI_SUCCESS | The callback function complete successfully. |
This | Indicates a pointer to the calling context. | |
MediaId | ID of the medium to be read. | |
Offset | The starting byte offset on the logical block I/O device to read from. | |
Token | A pointer to the token associated with the transaction. If this field is NULL, synchronous/blocking IO is performed. | |
BufferSize | The size in bytes of Buffer. The number of bytes to read from the device. | |
Buffer | A pointer to the destination buffer for the data. The caller is responsible either having implicit or explicit ownership of the buffer. |
EFI_SUCCESS | If Event is NULL (blocking I/O): The data was read correctly from the device. If Event is not NULL (asynchronous I/O): The request was successfully queued for processing. Event will be signaled upon completion. | |
EFI_DEVICE_ERROR | The device reported an error while performing the write. | |
EFI_NO_MEDIA | There is no medium in the device. | |
EFI_MEDIA_CHNAGED | The MediaId is not for the current medium. | |
EFI_INVALID_PARAMETER | The read request contains device addresses that are not valid for the device. | |
EFI_OUT_OF_RESOURCES | The request could not be completed due to a lack of resources. |
This | Indicates a pointer to the calling context. | |
MediaId | ID of the medium to be written. | |
Offset | The starting byte offset on the logical block I/O device to write to. | |
Token | A pointer to the token associated with the transaction. If this field is NULL, synchronous/blocking IO is performed. | |
BufferSize | The size in bytes of Buffer. The number of bytes to write to the device. | |
Buffer | A pointer to the buffer containing the data to be written. |
EFI_SUCCESS | If Event is NULL (blocking I/O): The data was written correctly to the device. If Event is not NULL (asynchronous I/O): The request was successfully queued for processing. Event will be signaled upon completion. | |
EFI_WRITE_PROTECTED | The device cannot be written to. | |
EFI_DEVICE_ERROR | The device reported an error while performing the write operation. | |
EFI_NO_MEDIA | There is no medium in the device. | |
EFI_MEDIA_CHNAGED | The MediaId is not for the current medium. | |
EFI_INVALID_PARAMETER | The write request contains device addresses that are not valid for the device. | |
EFI_OUT_OF_RESOURCES | The request could not be completed due to a lack of resources. |
This | Indicates a pointer to the calling context. | |
MediaId | ID of the medium to be written. | |
Token | A pointer to the token associated with the transaction. If this field is NULL, synchronous/blocking IO is performed. |
EFI_SUCCESS | If Event is NULL (blocking I/O): The data was flushed successfully to the device. If Event is not NULL (asynchronous I/O): The request was successfully queued for processing. Event will be signaled upon completion. | |
EFI_WRITE_PROTECTED | The device cannot be written to. | |
EFI_DEVICE_ERROR | The device reported an error while performing the write operation. | |
EFI_NO_MEDIA | There is no medium in the device. | |
EFI_MEDIA_CHNAGED | The MediaId is not for the current medium. | |
EFI_OUT_OF_RESOURCES | The request could not be completed due to a lack of resources. |
This function is used to configure DNS mode data for this DNS instance.
[in] | This | Pointer to EFI_DNS4_PROTOCOL instance. |
[in] | DnsConfigData | Point to the Configuration data. |
EFI_SUCCESS | The operation completed successfully. | |
EFI_UNSUPPORTED | The designated protocol is not supported. | |
EFI_INVALID_PARAMTER | Thisis NULL. The StationIp address provided in DnsConfigData is not a valid unicast. DnsServerList is NULL while DnsServerListCount is not ZERO. DnsServerListCount is ZERO while DnsServerList is not NULL | |
EFI_OUT_OF_RESOURCES | The DNS instance data or required space could not be allocated. | |
EFI_DEVICE_ERROR | An unexpected system or network error occurred. The EFI DNSv4 Protocol instance is not configured. | |
EFI_ALREADY_STARTED | Second call to Configure() with DnsConfigData. To reconfigure the instance the caller must call Configure() with NULL first to return driver to unconfigured state. |
The HostNameToIp () function is used to translate the host name to host IP address. A type A query is used to get the one or more IP addresses for this host.
[in] | This | Pointer to EFI_DNS4_PROTOCOL instance. |
[in] | Hostname | Host name. |
[in] | Token | Point to the completion token to translate host name to host address. |
EFI_SUCCESS | The operation completed successfully. | |
EFI_INVALID_PARAMETER | One or more of the following conditions is TRUE: This is NULL. Token is NULL. Token.Event is NULL. HostName is NULL. HostName string is unsupported format. | |
EFI_NO_MAPPING | There's no source address is available for use. | |
EFI_NOT_STARTED | This instance has not been started. |
The IpToHostName() function is used to translate the host address to host name. A type PTR query is used to get the primary name of the host. Support of this function is optional.
[in] | This | Pointer to EFI_DNS4_PROTOCOL instance. |
[in] | IpAddress | Ip Address. |
[in] | Token | Point to the completion token to translate host address to host name. |
EFI_SUCCESS | The operation completed successfully. | |
EFI_UNSUPPORTED | This function is not supported. | |
EFI_INVALID_PARAMETER | One or more of the following conditions is TRUE: This is NULL. Token is NULL. Token.Event is NULL. IpAddress is not valid IP address . | |
EFI_NO_MAPPING | There's no source address is available for use. | |
EFI_ALREADY_STARTED | This Token is being used in another DNS session. | |
EFI_NOT_STARTED | This instance has not been started. | |
EFI_OUT_OF_RESOURCES | Failed to allocate needed resources. |
This GeneralLookup() function retrieves arbitrary information from the DNS. The caller supplies a QNAME, QTYPE, and QCLASS, and all of the matching RRs are returned. All RR content (e.g., TTL) was returned. The caller need parse the returned RR to get required information. The function is optional.
[in] | This | Pointer to EFI_DNS4_PROTOCOL instance. |
[in] | QName | Pointer to Query Name. |
[in] | QType | Query Type. |
[in] | QClass | Query Name. |
[in] | Token | Point to the completion token to retrieve arbitrary information. |
EFI_SUCCESS | The operation completed successfully. | |
EFI_UNSUPPORTED | This function is not supported. Or the requested QType is not supported | |
EFI_INVALID_PARAMETER | One or more of the following conditions is TRUE: This is NULL. Token is NULL. Token.Event is NULL. QName is NULL. | |
EFI_NO_MAPPING | There's no source address is available for use. | |
EFI_ALREADY_STARTED | This Token is being used in another DNS session. | |
EFI_OUT_OF_RESOURCES | Failed to allocate needed resources. |
The UpdateDnsCache() function is used to add/delete/modify DNS cache entry. DNS cache can be normally dynamically updated after the DNS resolve succeeds. This function provided capability to manually add/delete/modify the DNS cache.
[in] | This | Pointer to EFI_DNS4_PROTOCOL instance. |
[in] | DeleteFlag | If FALSE, this function is to add one entry to the DNS Cahce. If TRUE, this function will delete matching DNS Cache entry. |
[in] | Override | If TRUE, the maching DNS cache entry will be overwritten with the supplied parameter. If FALSE, EFI_ACCESS_DENIED will be returned if the entry to be added is already existed. |
[in] | DnsCacheEntry | Pointer to DNS Cache entry. |
EFI_SUCCESS | The operation completed successfully. | |
EFI_INVALID_PARAMETER | One or more of the following conditions is TRUE: This is NULL. DnsCacheEntry.HostName is NULL. DnsCacheEntry.IpAddress is NULL. DnsCacheEntry.Timeout is zero. | |
EFI_ACCESS_DENIED | The DNS cache entry already exists and Override is not TRUE. |
The Poll() function can be used by network drivers and applications to increase the rate that data packets are moved between the communications device and the transmit and receive queues. In some systems, the periodic timer event in the managed network driver may not poll the underlying communications device fast enough to transmit and/or receive all data packets without missing incoming packets or dropping outgoing packets. Drivers and applications that are experiencing packet loss should try calling the Poll() function more often.
[in] | This | Pointer to EFI_DNS4_PROTOCOL instance. |
EFI_SUCCESS | Incoming or outgoing data was processed. | |
EFI_NOT_STARTED | This EFI DNS Protocol instance has not been started. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_DEVICE_ERROR | An unexpected system or network error occurred. | |
EFI_TIMEOUT | Data was dropped out of the transmit and/or receive queue. Consider increasing the polling rate. |
The Cancel() function is used to abort a pending resolution request. After calling this function, Token.Status will be set to EFI_ABORTED and then Token.Event will be signaled. If the token is not in one of the queues, which usually means that the asynchronous operation has completed, this function will not signal the token and EFI_NOT_FOUND is returned.
[in] | This | Pointer to EFI_DNS4_PROTOCOL instance. |
[in] | Token | Pointer to a token that has been issued by EFI_DNS4_PROTOCOL.HostNameToIp (), EFI_DNS4_PROTOCOL.IpToHostName() or EFI_DNS4_PROTOCOL.GeneralLookup(). If NULL, all pending tokens are aborted. |
EFI_SUCCESS | Incoming or outgoing data was processed. | |
EFI_NOT_STARTED | This EFI DNS4 Protocol instance has not been started. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_NOT_FOUND | When Token is not NULL, and the asynchronous DNS operation was not found in the transmit queue. It was either completed or was not issued by HostNameToIp(), IpToHostName() or GeneralLookup(). |
The IpToHostName () function is used to translate the host address to host name. A type PTR query is used to get the primary name of the host. Implementation can choose to support this function or not.
[in] | This | Pointer to EFI_DNS6_PROTOCOL instance. |
[in] | IpAddress | Ip Address. |
[in] | Token | Point to the completion token to translate host address to host name. |
EFI_SUCCESS | The operation completed successfully. | |
EFI_UNSUPPORTED | This function is not supported. | |
EFI_INVALID_PARAMETER | One or more of the following conditions is TRUE: This is NULL. Token is NULL. Token.Event is NULL. IpAddress is not valid IP address. | |
EFI_NO_MAPPING | There's no source address is available for use. | |
EFI_NOT_STARTED | This instance has not been started. | |
EFI_OUT_OF_RESOURCES | Failed to allocate needed resources. |
This GeneralLookup() function retrieves arbitrary information from the DNS. The caller supplies a QNAME, QTYPE, and QCLASS, and all of the matching RRs are returned. All RR content (e.g., TTL) was returned. The caller need parse the returned RR to get required information. The function is optional. Implementation can choose to support it or not.
[in] | This | Pointer to EFI_DNS6_PROTOCOL instance. |
[in] | QName | Pointer to Query Name. |
[in] | QType | Query Type. |
[in] | QClass | Query Name. |
[in] | Token | Point to the completion token to retrieve arbitrary information. |
EFI_SUCCESS | The operation completed successfully. | |
EFI_UNSUPPORTED | This function is not supported. Or the requested QType is not supported | |
EFI_INVALID_PARAMETER | One or more of the following conditions is TRUE: This is NULL. Token is NULL. Token.Event is NULL. QName is NULL. | |
EFI_NO_MAPPING | There's no source address is available for use. | |
EFI_NOT_STARTED | This instance has not been started. | |
EFI_OUT_OF_RESOURCES | Failed to allocate needed resources. |
The UpdateDnsCache() function is used to add/delete/modify DNS cache entry. DNS cache can be normally dynamically updated after the DNS resolve succeeds. This function provided capability to manually add/delete/modify the DNS cache.
[in] | This | Pointer to EFI_DNS6_PROTOCOL instance. |
[in] | DeleteFlag | If FALSE, this function is to add one entry to the DNS Cahce. If TRUE, this function will delete matching DNS Cache entry. |
[in] | Override | If TRUE, the maching DNS cache entry will be overwritten with the supplied parameter. If FALSE, EFI_ACCESS_DENIED will be returned if the entry to be added is already existed. |
[in] | DnsCacheEntry | Pointer to DNS Cache entry. |
EFI_SUCCESS | The operation completed successfully. | |
EFI_INVALID_PARAMETER | One or more of the following conditions is TRUE: This is NULL. DnsCacheEntry.HostName is NULL. DnsCacheEntry.IpAddress is NULL. DnsCacheEntry.Timeout is zero. | |
EFI_ACCESS_DENIED | The DNS cache entry already exists and Override is not TRUE. | |
EFI_OUT_OF_RESOURCE | Failed to allocate needed resources. |
The Poll() function can be used by network drivers and applications to increase the rate that data packets are moved between the communications device and the transmit and receive queues.
In some systems, the periodic timer event in the managed network driver may not poll the underlying communications device fast enough to transmit and/or receive all data packets without missing incoming packets or dropping outgoing packets. Drivers and applications that are experiencing packet loss should try calling the Poll() function more often.
[in] | This | Pointer to EFI_DNS6_PROTOCOL instance. |
EFI_SUCCESS | Incoming or outgoing data was processed. | |
EFI_NOT_STARTED | This EFI DNS Protocol instance has not been started. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_NO_MAPPING | There is no source address is available for use. | |
EFI_DEVICE_ERROR | An unexpected system or network error occurred. | |
EFI_TIMEOUT | Data was dropped out of the transmit and/or receive queue. Consider increasing the polling rate. |
The Cancel() function is used to abort a pending resolution request. After calling this function, Token.Status will be set to EFI_ABORTED and then Token.Event will be signaled. If the token is not in one of the queues, which usually means that the asynchronous operation has completed, this function will not signal the token and EFI_NOT_FOUND is returned.
[in] | This | Pointer to EFI_DNS6_PROTOCOL instance. |
[in] | Token | Pointer to a token that has been issued by EFI_DNS6_PROTOCOL.HostNameToIp (), EFI_DNS6_PROTOCOL.IpToHostName() or EFI_DNS6_PROTOCOL.GeneralLookup(). If NULL, all pending tokens are aborted. |
EFI_SUCCESS | Incoming or outgoing data was processed. | |
EFI_NOT_STARTED | This EFI DNS6 Protocol instance has not been started. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_NO_MAPPING | There's no source address is available for use. | |
EFI_NOT_FOUND | When Token is not NULL, and the asynchronous DNS operation was not found in the transmit queue. It was either completed or was not issued by HostNameToIp(), IpToHostName() or GeneralLookup(). |
The GetData() function gets EAP configuration.
[in] | This | Pointer to the EFI_EAP_CONFIGURATION_PROTOCOL instance. |
[in] | EapType | EAP type. |
[in] | DataType | Configuration data type. |
[in,out] | Data | Pointer to configuration data. |
[in,out] | DataSize | Total size of configuration data. On input, it means the size of Data buffer. On output, it means the size of copied Data buffer if EFI_SUCCESS, and means the size of desired Data buffer if EFI_BUFFER_TOO_SMALL. |
EFI_SUCCESS | The EAP configuration data is got successfully. | |
EFI_INVALID_PARAMETER | One or more of the following conditions is TRUE: Data is NULL. DataSize is NULL. | |
EFI_UNSUPPORTED | The EapType or DataType is unsupported. | |
EFI_NOT_FOUND | The EAP configuration data is not found. | |
EFI_BUFFER_TOO_SMALL | The buffer is too small to hold the buffer. |
If there is an issue in resolving the contents of the KeywordString, then the function returns an EFI_INVALID_PARAMETER and also set the Progress and ProgressErr with the appropriate information about where the issue occurred and additional data about the nature of the issue.
In the case when KeywordString is NULL, or contains multiple keywords, or when EFI_NOT_FOUND is generated while processing the keyword elements, the Results string contains values returned for all keywords processed prior to the keyword generating the error but no values for the keyword with error or any following keywords.
This | Pointer to the EFI_KEYWORD_HANDLER _PROTOCOL instance. | |
NameSpaceId | A null-terminated string containing the platform configuration language to search through in the system. If a NULL is passed in, then it is assumed that any platform configuration language with the prefix of "x-UEFI-" are searched. | |
KeywordString | A null-terminated string in <MultiKeywordRequest> format. If a NULL is passed in the KeywordString field, all of the known keywords in the system for the NameSpaceId specified are returned in the Results field. | |
Progress | On return, points to a character in the KeywordString. Points to the string's NULL terminator if the request was successful. Points to the most recent '&' before the first failing string element if the request was not successful. | |
ProgressErr | If during the processing of the KeywordString there was a failure, this parameter gives additional information about the possible source of the problem. See the definitions in SetData() for valid value definitions. | |
Results | A null-terminated string in <MultiKeywordResp> format is returned which has all the values filled in for the keywords in the KeywordString. This is a callee-allocated field, and must be freed by the caller after being used. |
EFI_SUCCESS | The specified action was completed successfully. | |
EFI_INVALID_PARAMETER | One or more of the following are TRUE: 1.Progress, ProgressErr, or Resuts is NULL. 2.Parsing of the KeywordString resulted in an error. See Progress and ProgressErr for more data. | |
EFI_NOT_FOUND | An element of the KeywordString was not found. See ProgressErr for more data. | |
EFI_NOT_FOUND | The NamespaceId specified was not found. See ProgressErr for more data. | |
EFI_OUT_OF_RESOURCES | Required system resources could not be allocated. See ProgressErr for more data. | |
EFI_ACCESS_DENIED | The action violated system policy. See ProgressErr for more data. | |
EFI_DEVICE_ERROR | An unexpected system error occurred. See ProgressErr for more data. |
The HTTP driver will queue a receive token to the underlying TCP instance. When data is received in the underlying TCP instance, the data will be parsed and Token will be populated with the response data. If the data received from the remote host contains an incomplete or invalid HTTP header, the HTTP driver will continue waiting (asynchronously) for more data to be sent from the remote host before signaling Event in Token.
It is the responsibility of the caller to allocate a buffer for Body and specify the size in BodyLength. If the remote host provides a response that contains a content body, up to BodyLength bytes will be copied from the receive buffer into Body and BodyLength will be updated with the amount of bytes received and copied to Body. This allows the client to download a large file in chunks instead of into one contiguous block of memory. Similar to HTTP request, if Body is not NULL and BodyLength is non-zero and all other fields are NULL or 0, the HTTP driver will queue a receive token to underlying TCP instance. If data arrives in the receive buffer, up to BodyLength bytes of data will be copied to Body. The HTTP driver will then update BodyLength with the amount of bytes received and copied to Body.
If the HTTP driver does not have an open underlying TCP connection with the host specified in the response URL, Request() will return EFI_ACCESS_DENIED. This is consistent with RFC 2616 recommendation that HTTP clients should attempt to maintain an open TCP connection between client and host.
[in] | This | Pointer to EFI_HTTP_PROTOCOL instance. |
[in] | Token | Pointer to storage containing HTTP response token. |
EFI_SUCCESS | Allocation succeeded. | |
EFI_NOT_STARTED | This EFI HTTP Protocol instance has not been initialized. | |
EFI_INVALID_PARAMETER | One or more of the following conditions is TRUE: This is NULL. Token->Message->Headers is NULL. Token->Message is NULL. Token->Message->Body is not NULL, Token->Message->BodyLength is non-zero, and Token->Message->Data is NULL, but a previous call to Response() has not been completed successfully. | |
EFI_ACCESS_DENIED | An open TCP connection is not present with the host specified by response URL. |
In some systems, the periodic timer event in the managed network driver may not poll the underlying communications device fast enough to transmit and/or receive all data packets without missing incoming packets or dropping outgoing packets. Drivers and applications that are experiencing packet loss should try calling the Poll() function more often.
[in] | This | Pointer to EFI_HTTP_PROTOCOL instance. |
EFI_SUCCESS | Incoming or outgoing data was processed.. | |
EFI_DEVICE_ERROR | An unexpected system or network error occurred | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_NOT_READY | No incoming or outgoing data is processed. |
The Parse() function is used to transform data stored in HttpHeader into a list of fields paired with their corresponding values.
[in] | This | Pointer to EFI_HTTP_UTILITIES_PROTOCOL instance. |
[in] | HttpMessage | Contains raw unformatted HTTP header string. |
[in] | HttpMessageSize | Size of HTTP header. |
[out] | HeaderFields | Array of key/value header pairs. |
[out] | FieldCount | Number of headers in HeaderFields. |
EFI_SUCCESS | Allocation succeeded. | |
EFI_NOT_STARTED | This EFI HTTP Protocol instance has not been initialized. | |
EFI_INVALID_PARAMETER | One or more of the following conditions is TRUE: This is NULL. HttpMessage is NULL. HeaderFields is NULL. FieldCount is NULL. |
This function returns the requested I2C bus clock frequency for the I2cBusConfiguration. This routine is provided for diagnostic purposes and is meant to be called after calling Enumerate to get the I2cBusConfiguration value.
[in] | This | Pointer to an EFI_I2C_ENUMERATE_PROTOCOL structure. |
[in] | I2cBusConfiguration | I2C bus configuration to access the I2C device |
[out] | *BusClockHertz | Pointer to a buffer to receive the I2C bus clock frequency in Hertz |
EFI_SUCCESS | The I2C bus frequency was returned successfully. | |
EFI_INVALID_PARAMETER | BusClockHertz was NULL | |
EFI_NO_MAPPING | Invalid I2cBusConfiguration value |
This routine must be called at or below TPL_NOTIFY.
The I2C controller is reset. The caller must call SetBusFrequench() after calling Reset().
[in] | This | Pointer to an EFI_I2C_MASTER_PROTOCOL structure. |
EFI_SUCCESS | The reset completed successfully. | |
EFI_ALREADY_STARTED | The controller is busy with another transaction. | |
EFI_DEVICE_ERROR | The reset operation failed. |
This routine must be called at or below TPL_NOTIFY. For synchronous requests this routine must be called at or below TPL_CALLBACK.
This function initiates an I2C transaction on the controller. To enable proper error handling by the I2C protocol stack, the I2C master protocol does not support queuing but instead only manages one I2C transaction at a time. This API requires that the I2C bus is in the correct configuration for the I2C transaction.
The transaction is performed by sending a start-bit and selecting the I2C device with the specified I2C slave address and then performing the specified I2C operations. When multiple operations are requested they are separated with a repeated start bit and the slave address. The transaction is terminated with a stop bit.
When Event is NULL, StartRequest operates synchronously and returns the I2C completion status as its return value.
When Event is not NULL, StartRequest synchronously returns EFI_SUCCESS indicating that the I2C transaction was started asynchronously. The transaction status value is returned in the buffer pointed to by I2cStatus upon the completion of the I2C transaction when I2cStatus is not NULL. After the transaction status is returned the Event is signaled.
Note: The typical consumer of this API is the I2C host protocol. Extreme care must be taken by other consumers of this API to prevent confusing the third party I2C drivers due to a state change at the I2C device which the third party I2C drivers did not initiate. I2C platform specific code may use this API within these guidelines.
[in] | This | Pointer to an EFI_I2C_MASTER_PROTOCOL structure. |
[in] | SlaveAddress | Address of the device on the I2C bus. Set the I2C_ADDRESSING_10_BIT when using 10-bit addresses, clear this bit for 7-bit addressing. Bits 0-6 are used for 7-bit I2C slave addresses and bits 0-9 are used for 10-bit I2C slave addresses. |
[in] | RequestPacket | Pointer to an EFI_I2C_REQUEST_PACKET structure describing the I2C transaction. |
[in] | Event | Event to signal for asynchronous transactions, NULL for asynchronous transactions |
[out] | I2cStatus | Optional buffer to receive the I2C transaction completion status |
EFI_SUCCESS | The asynchronous transaction was successfully started when Event is not NULL. | |
EFI_SUCCESS | The transaction completed successfully when Event is NULL. | |
EFI_ALREADY_STARTED | The controller is busy with another transaction. | |
EFI_BAD_BUFFER_SIZE | The RequestPacket->LengthInBytes value is too large. | |
EFI_DEVICE_ERROR | There was an I2C error (NACK) during the transaction. | |
EFI_INVALID_PARAMETER | RequestPacket is NULL | |
EFI_NOT_FOUND | Reserved bit set in the SlaveAddress parameter | |
EFI_NO_RESPONSE | The I2C device is not responding to the slave address. EFI_DEVICE_ERROR will be returned if the controller cannot distinguish when the NACK occurred. | |
EFI_OUT_OF_RESOURCES | Insufficient memory for I2C transaction | |
EFI_UNSUPPORTED | The controller does not support the requested transaction. |
This function returns the configuration data of type DataType for the EFI IPv4 network stack running on the communication device this EFI IPv4 Configuration II Protocol instance manages. The caller is responsible for allocating the buffer usedto return the specified configuration data and the required size will be returned to the caller if the size of the buffer is too small. EFI_NOT_READY is returned if the specified configuration data is not ready due to an already in progress asynchronous configuration process. The caller can call RegisterDataNotify() to register an event on the specified configuration data. Once the asynchronous configuration process is finished, the event will be signaled and a subsequent GetData() call will return the specified configuration data.
[in] | This | Pointer to the EFI_IP4_CONFIG2_PROTOCOL instance. |
[in] | DataType | The type of data to get. |
[out] | DataSize | On input, in bytes, the size of Data. On output, in bytes, the size of buffer required to store the specified configuration data. |
[in] | Data | The data buffer in which the configuration data is returned. The type of the data buffer is associated with the DataType. Ignored if DataSize is 0. |
EFI_SUCCESS | The specified configuration data is got successfully. | |
EFI_INVALID_PARAMETER | One or more of the followings are TRUE: This is NULL. DataSize is NULL. Data is NULL if *DataSizeis not zero. | |
EFI_BUFFER_TOO_SMALL | The size of Data is too small for the specified configuration data and the required size is returned in DataSize. | |
EFI_NOT_READY | The specified configuration data is not ready due to an already in progress asynchronous configuration process. | |
EFI_NOT_FOUND | The specified configuration data is not found. |
This function registers an event that is to be signaled whenever a configuration process on the specified configuration data is done. An event can be registered for different DataType simultaneously and the caller is responsible for determining which type of configuration data causes the signaling of the event in such case.
[in] | This | Pointer to the EFI_IP4_CONFIG2_PROTOCOL instance. |
[in] | DataType | The type of data to unregister the event for. |
[in] | Event | The event to register. |
EFI_SUCCESS | The notification event for the specified configuration data is registered. | |
EFI_INVALID_PARAMETER | This is NULL or Event is NULL. | |
EFI_UNSUPPORTED | The configuration data type specified by DataType is not supported. | |
EFI_OUT_OF_RESOURCES | Required system resources could not be allocated. | |
EFI_ACCESS_DENIED | The Event is already registered for the DataType. |
This function removes a previously registeredevent for the specified configuration data.
[in] | This | Pointer to the EFI_IP4_CONFIG2_PROTOCOL instance. |
[in] | DataType | The type of data to remove the previously registered event for. |
[in] | Event | The event to unregister. |
EFI_SUCCESS | The event registered for the specified configuration data is removed. | |
EFI_INVALID_PARAMETER | This is NULL or Event is NULL. | |
EFI_NOT_FOUND | The Eventhas not been registered for the specified DataType. |
This function closes a previously opened I/O aperture handle. If there are no more I/O aperture handles that refer to the hardware I/O aperture resource, then the hardware I/O aperture is closed. It may be possible that a single hardware aperture may be used for more than one device. This function tracks the number of times that each aperture is referenced, and does not close the hardware aperture (via CloseIoAperture()) until there are no more references to it.
This | A pointer to this instance of the EFI_ISA_HC_PROTOCOL. | |
IoApertureHandle | The I/O aperture handle previously returned from a call to OpenIoAperture(). |
EFI_SUCCESS | The IO aperture was closed successfully. |
[in] | This | Pointer to the EFI_KMS_PROTOCOL instance. |
[in] | Client | Pointer to a valid EFI_KMS_CLIENT_INFO structure. |
[in,out] | ClientDataSize | Pointer to the size, in bytes, of an arbitrary block of data specified by the ClientData parameter. This parameter may be NULL, in which case the ClientData parameter will be ignored and no data will be transferred to or from the KMS. If the parameter is not NULL, then ClientData must be a valid pointer. If the value pointed to is 0, no data will be transferred to the KMS, but data may be returned by the KMS. For all non-zero values *ClientData will be transferred to the KMS, which may also return data to the caller. In all cases, the value upon return to the caller will be the size of the data block returned to the caller, which will be zero if no data is returned from the KMS. |
[in,out] | ClientData | Pointer to a pointer to an arbitrary block of data of ClientDataSize that is to be passed directly to the KMS if it supports the use of client data. This parameter may be NULL if and only if the ClientDataSize parameter is also NULL. Upon return to the caller, *ClientData points to a block of data of ClientDataSize that was returned from the KMS. If the returned value for *ClientDataSize is zero, then the returned value for *ClientData must be NULL and should be ignored by the caller. The KMS protocol consumer is responsible for freeing all valid buffers used for client data regardless of whether they are allocated by the caller for input to the function or by the implementation for output back to the caller. |
EFI_SUCCESS | The client information has been accepted by the KMS. | |
EFI_NOT_READY | No connection to the KMS is available. | |
EFI_NO_RESPONSE | There was no response from the device or the key server. | |
EFI_ACCESS_DENIED | Access was denied by the device or the key server. | |
EFI_DEVICE_ERROR | An error occurred when attempting to access the KMS. | |
EFI_OUT_OF_RESOURCES | Required resources were not available to perform the function. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_UNSUPPORTED | The KMS does not support the use of client identifiers. |
[in] | This | Pointer to the EFI_KMS_PROTOCOL instance. |
[in] | Client | Pointer to a valid EFI_KMS_CLIENT_INFO structure. |
[in,out] | KeyDescriptorCount | Pointer to a count of the number of key descriptors to be processed by this operation. On return, this number will be updated with the number of key descriptors successfully processed. |
[in,out] | KeyDescriptors | Pointer to an array of EFI_KMS_KEY_DESCRIPTOR structures which describe the keys to be generated. On input, the KeyIdentifierSize and the KeyIdentifier may specify an identifier to be used for the key, but this is not required. The KeyFormat field must specify a key format GUID reported as supported by the KeyFormats field of the EFI_KMS_PROTOCOL. The value for this field in the first key descriptor will be considered the default value for subsequent key descriptors requested in this operation if those key descriptors have a NULL GUID in the key format field. On output, the KeyIdentifierSize and KeyIdentifier fields will specify an identifier for the key which will be either the original identifier if one was provided, or an identifier generated either by the KMS or the KMS protocol implementation. The KeyFormat field will be updated with the GUID used to generate the key if it was a NULL GUID, and the KeyValue field will contain a pointer to memory containing the key value for the generated key. Memory for both the KeyIdentifier and the KeyValue fields will be allocated with the BOOT_SERVICES_DATA type and must be freed by the caller when it is no longer needed. Also, the KeyStatus field must reflect the result of the request relative to that key. |
[in,out] | ClientDataSize | Pointer to the size, in bytes, of an arbitrary block of data specified by the ClientData parameter. This parameter may be NULL, in which case the ClientData parameter will be ignored and no data will be transferred to or from the KMS. If the parameter is not NULL, then ClientData must be a valid pointer. If the value pointed to is 0, no data will be transferred to the KMS, but data may be returned by the KMS. For all non-zero values *ClientData will be transferred to the KMS, which may also return data to the caller. In all cases, the value upon return to the caller will be the size of the data block returned to the caller, which will be zero if no data is returned from the KMS. |
[in,out] | ClientData | Pointer to a pointer to an arbitrary block of data of ClientDataSize that is to be passed directly to the KMS if it supports the use of client data. This parameter may be NULL if and only if the ClientDataSize parameter is also NULL. Upon return to the caller, *ClientData points to a block of data of ClientDataSize that was returned from the KMS. If the returned value for *ClientDataSize is zero, then the returned value for *ClientData must be NULL and should be ignored by the caller. The KMS protocol consumer is responsible for freeing all valid buffers used for client data regardless of whether they are allocated by the caller for input to the function or by the implementation for output back to the caller. |
EFI_SUCCESS | Successfully generated and retrieved all requested keys. | |
EFI_UNSUPPORTED | This function is not supported by the KMS. --OR-- One (or more) of the key requests submitted is not supported by the KMS. Check individual key request(s) to see which ones may have been processed. | |
EFI_OUT_OF_RESOURCES | Required resources were not available to perform the function. | |
EFI_TIMEOUT | Timed out waiting for device or key server. Check individual key request(s) to see which ones may have been processed. | |
EFI_ACCESS_DENIED | Access was denied by the device or the key server; OR a ClientId is required by the server and either no id was provided or an invalid id was provided. | |
EFI_DEVICE_ERROR | An error occurred when attempting to access the KMS. Check individual key request(s) to see which ones may have been processed. | |
EFI_INVALID_PARAMETER | This is NULL, ClientId is required but it is NULL, KeyDescriptorCount is NULL, or Keys is NULL. | |
EFI_NOT_FOUND | One or more EFI_KMS_KEY_DESCRIPTOR structures could not be processed properly. KeyDescriptorCount contains the number of structures which were successfully processed. Individual structures will reflect the status of the processing for that structure. |
[in] | This | Pointer to the EFI_KMS_PROTOCOL instance. |
[in] | Client | Pointer to a valid EFI_KMS_CLIENT_INFO structure. |
[in,out] | KeyDescriptorCount | Pointer to a count of the number of key descriptors to be processed by this operation. On return, this number will be updated with the number of key descriptors successfully processed. |
[in,out] | KeyDescriptors | Pointer to an array of EFI_KMS_KEY_DESCRIPTOR structures which describe the keys to be retrieved from the KMS. On input, the KeyIdentifierSize and the KeyIdentifier must specify an identifier to be used to retrieve a specific key. All other fields in the descriptor should be NULL. On output, the KeyIdentifierSize and KeyIdentifier fields will be unchanged, while the KeyFormat and KeyValue fields will be updated values associated with this key identifier. Memory for the KeyValue field will be allocated with the BOOT_SERVICES_DATA type and must be freed by the caller when it is no longer needed. Also, the KeyStatus field will reflect the result of the request relative to the individual key descriptor. |
[in,out] | ClientDataSize | Pointer to the size, in bytes, of an arbitrary block of data specified by the ClientData parameter. This parameter may be NULL, in which case the ClientData parameter will be ignored and no data will be transferred to or from the KMS. If the parameter is not NULL, then ClientData must be a valid pointer. If the value pointed to is 0, no data will be transferred to the KMS, but data may be returned by the KMS. For all non-zero values *ClientData will be transferred to the KMS, which may also return data to the caller. In all cases, the value upon return to the caller will be the size of the data block returned to the caller, which will be zero if no data is returned from the KMS. |
[in,out] | ClientData | Pointer to a pointer to an arbitrary block of data of ClientDataSize that is to be passed directly to the KMS if it supports the use of client data. This parameter may be NULL if and only if the ClientDataSize parameter is also NULL. Upon return to the caller, *ClientData points to a block of data of ClientDataSize that was returned from the KMS. If the returned value for *ClientDataSize is zero, then the returned value for *ClientData must be NULL and should be ignored by the caller. The KMS protocol consumer is responsible for freeing all valid buffers used for client data regardless of whether they are allocated by the caller for input to the function or by the implementation for output back to the caller. |
EFI_SUCCESS | Successfully retrieved all requested keys. | |
EFI_OUT_OF_RESOURCES | Could not allocate resources for the method processing. | |
EFI_TIMEOUT | Timed out waiting for device or key server. Check individual key request(s) to see which ones may have been processed. | |
EFI_BUFFER_TOO_SMALL | If multiple keys are associated with a single identifier, and the KeyValue buffer does not contain enough structures (KeyDescriptorCount) to contain all the key data, then the available structures will be filled and KeyDescriptorCount will be updated to indicate the number of keys which could not be processed. | |
EFI_ACCESS_DENIED | Access was denied by the device or the key server; OR a ClientId is required by the server and either none or an invalid id was provided. | |
EFI_DEVICE_ERROR | Device or key server error. Check individual key request(s) to see which ones may have been processed. | |
EFI_INVALID_PARAMETER | This is NULL, ClientId is required but it is NULL, KeyDescriptorCount is NULL, or Keys is NULL. | |
EFI_NOT_FOUND | One or more EFI_KMS_KEY_DESCRIPTOR structures could not be processed properly. KeyDescriptorCount contains the number of structures which were successfully processed. Individual structures will reflect the status of the processing for that structure. | |
EFI_UNSUPPORTED | The implementation/KMS does not support this function. |
[in] | This | Pointer to the EFI_KMS_PROTOCOL instance. |
[in] | Client | Pointer to a valid EFI_KMS_CLIENT_INFO structure. |
[in,out] | KeyDescriptorCount | Pointer to a count of the number of key descriptors to be processed by this operation. On normal return, this number will be updated with the number of key descriptors successfully processed. |
[in,out] | KeyDescriptors | Pointer to an array of EFI_KMS_KEY_DESCRIPTOR structures which describe the keys to be added. On input, the KeyId field for first key must contain valid identifier data to be used for adding a key to the KMS. The values for these fields in this key definition will be considered default values for subsequent keys requested in this operation. A value of 0 in any subsequent KeyId field will be replaced with the current default value. The KeyFormat and KeyValue fields for each key to be added must contain consistent values to be associated with the given KeyId. On return, the KeyStatus field will reflect the result of the operation for each key request. |
[in,out] | ClientDataSize | Pointer to the size, in bytes, of an arbitrary block of data specified by the ClientData parameter. This parameter may be NULL, in which case the ClientData parameter will be ignored and no data will be transferred to or from the KMS. If the parameter is not NULL, then ClientData must be a valid pointer. If the value pointed to is 0, no data will be transferred to the KMS, but data may be returned by the KMS. For all non-zero values *ClientData will be transferred to the KMS, which may also return data to the caller. In all cases, the value upon return to the caller will be the size of the data block returned to the caller, which will be zero if no data is returned from the KMS. |
[in,out] | ClientData | Pointer to a pointer to an arbitrary block of data of ClientDataSize that is to be passed directly to the KMS if it supports the use of client data. This parameter may be NULL if and only if the ClientDataSize parameter is also NULL. Upon return to the caller, *ClientData points to a block of data of ClientDataSize that was returned from the KMS. If the returned value for *ClientDataSize is zero, then the returned value for *ClientData must be NULL and should be ignored by the caller. The KMS protocol consumer is responsible for freeing all valid buffers used for client data regardless of whether they are allocated by the caller for input to the function or by the implementation for output back to the caller. |
EFI_SUCCESS | Successfully added all requested keys. | |
EFI_OUT_OF_RESOURCES | Could not allocate required resources. | |
EFI_TIMEOUT | Timed out waiting for device or key server. Check individual key request(s) to see which ones may have been processed. | |
EFI_BUFFER_TOO_SMALL | If multiple keys are associated with a single identifier, and the KeyValue buffer does not contain enough structures (KeyDescriptorCount) to contain all the key data, then the available structures will be filled and KeyDescriptorCount will be updated to indicate the number of keys which could not be processed | |
EFI_ACCESS_DENIED | Access was denied by the device or the key server; OR a ClientId is required by the server and either none or an invalid id was provided. | |
EFI_DEVICE_ERROR | Device or key server error. Check individual key request(s) to see which ones may have been processed. | |
EFI_INVALID_PARAMETER | This is NULL, ClientId is required but it is NULL, KeyDescriptorCount is NULL, or Keys is NULL. | |
EFI_NOT_FOUND | One or more EFI_KMS_KEY_DESCRIPTOR structures could not be processed properly. KeyDescriptorCount contains the number of structures which were successfully processed. Individual structures will reflect the status of the processing for that structure. | |
EFI_UNSUPPORTED | The implementation/KMS does not support this function. |
[in] | This | Pointer to the EFI_KMS_PROTOCOL instance. |
[in] | Client | Pointer to a valid EFI_KMS_CLIENT_INFO structure. |
[in,out] | KeyDescriptorCount | Pointer to a count of the number of key descriptors to be processed by this operation. On normal return, this number will be updated with the number of key descriptors successfully processed. |
[in,out] | KeyDescriptors | Pointer to an array of EFI_KMS_KEY_DESCRIPTOR structures which describe the keys to be deleted. On input, the KeyId field for first key must contain valid identifier data to be used for adding a key to the KMS. The values for these fields in this key definition will be considered default values for subsequent keys requested in this operation. A value of 0 in any subsequent KeyId field will be replaced with the current default value. The KeyFormat and KeyValue fields are ignored, but should be 0. On return, the KeyStatus field will reflect the result of the operation for each key request. |
[in,out] | ClientDataSize | Pointer to the size, in bytes, of an arbitrary block of data specified by the ClientData parameter. This parameter may be NULL, in which case the ClientData parameter will be ignored and no data will be transferred to or from the KMS. If the parameter is not NULL, then ClientData must be a valid pointer. If the value pointed to is 0, no data will be transferred to the KMS, but data may be returned by the KMS. For all non-zero values *ClientData will be transferred to the KMS, which may also return data to the caller. In all cases, the value upon return to the caller will be the size of the data block returned to the caller, which will be zero if no data is returned from the KMS. |
[in,out] | ClientData | Pointer to a pointer to an arbitrary block of data of ClientDataSize that is to be passed directly to the KMS if it supports the use of client data. This parameter may be NULL if and only if the ClientDataSize parameter is also NULL. Upon return to the caller, *ClientData points to a block of data of ClientDataSize that was returned from the KMS. If the returned value for *ClientDataSize is zero, then the returned value for *ClientData must be NULL and should be ignored by the caller. The KMS protocol consumer is responsible for freeing all valid buffers used for client data regardless of whether they are allocated by the caller for input to the function or by the implementation for output back to the caller. |
EFI_SUCCESS | Successfully deleted all requested keys. | |
EFI_OUT_OF_RESOURCES | Could not allocate required resources. | |
EFI_TIMEOUT | Timed out waiting for device or key server. Check individual key request(s) to see which ones may have been processed. | |
EFI_ACCESS_DENIED | Access was denied by the device or the key server; OR a ClientId is required by the server and either none or an invalid id was provided. | |
EFI_DEVICE_ERROR | Device or key server error. Check individual key request(s) to see which ones may have been processed. | |
EFI_INVALID_PARAMETER | This is NULL, ClientId is required but it is NULL, KeyDescriptorCount is NULL, or Keys is NULL. | |
EFI_NOT_FOUND | One or more EFI_KMS_KEY_DESCRIPTOR structures could not be processed properly. KeyDescriptorCount contains the number of structures which were successfully processed. Individual structures will reflect the status of the processing for that structure. | |
EFI_UNSUPPORTED | The implementation/KMS does not support this function. |
[in] | This | Pointer to the EFI_KMS_PROTOCOL instance. |
[in] | Client | Pointer to a valid EFI_KMS_CLIENT_INFO structure. |
[in] | KeyIdentifierSize | Pointer to the size in bytes of the KeyIdentifier variable. |
[in] | KeyIdentifier | Pointer to the key identifier associated with this key. |
[in,out] | KeyAttributesCount | Pointer to the number of EFI_KMS_KEY_ATTRIBUTE structures associated with the Key identifier. If none are found, the count value is zero on return. On input this value reflects the number of KeyAttributes that may be returned. On output, the value reflects the number of completed KeyAttributes structures found. |
[in,out] | KeyAttributes | Pointer to an array of EFI_KMS_KEY_ATTRIBUTE structures associated with the Key Identifier. On input, the fields in the structure should be NULL. On output, the attribute fields will have updated values for attributes associated with this key identifier. |
[in,out] | ClientDataSize | Pointer to the size, in bytes, of an arbitrary block of data specified by the ClientData parameter. This parameter may be NULL, in which case the ClientData parameter will be ignored and no data will be transferred to or from the KMS. If the parameter is not NULL, then ClientData must be a valid pointer. If the value pointed to is 0, no data will be transferred to the KMS, but data may be returned by the KMS. For all non-zero values *ClientData will be transferred to the KMS, which may also return data to the caller. In all cases, the value upon return to the caller will be the size of the data block returned to the caller, which will be zero if no data is returned from the KMS. |
[in,out] | ClientData | Pointer to a pointer to an arbitrary block of data of ClientDataSize that is to be passed directly to the KMS if it supports the use of client data. This parameter may be NULL if and only if the ClientDataSize parameter is also NULL. Upon return to the caller, *ClientData points to a block of data of ClientDataSize that was returned from the KMS. If the returned value for *ClientDataSize is zero, then the returned value for *ClientData must be NULL and should be ignored by the caller. The KMS protocol consumer is responsible for freeing all valid buffers used for client data regardless of whether they are allocated by the caller for input to the function or by the implementation for output back to the caller. |
EFI_SUCCESS | Successfully retrieved all key attributes. | |
EFI_OUT_OF_RESOURCES | Could not allocate resources for the method processing. | |
EFI_TIMEOUT | Timed out waiting for device or key server. Check individual key attribute request(s) to see which ones may have been processed. | |
EFI_BUFFER_TOO_SMALL | If multiple key attributes are associated with a single identifier, and the KeyAttributes buffer does not contain enough structures (KeyAttributesCount) to contain all the key attributes data, then the available structures will be filled and KeyAttributesCount will be updated to indicate the number of key attributes which could not be processed. | |
EFI_ACCESS_DENIED | Access was denied by the device or the key server; OR a ClientId is required by the server and either none or an invalid id was provided. | |
EFI_DEVICE_ERROR | Device or key server error. Check individual key attribute request(s) (i.e. key attribute status for each) to see which ones may have been processed. | |
EFI_INVALID_PARAMETER | This is NULL, ClientId is required but it is NULL, KeyIdentifierSize is NULL , or KeyIdentifier is NULL, or KeyAttributes is NULL, or KeyAttributesSize is NULL. | |
EFI_NOT_FOUND | The KeyIdentifier could not be found. KeyAttributesCount contains zero. Individual structures will reflect the status of the processing for that structure. | |
EFI_UNSUPPORTED | The implementation/KMS does not support this function. |
[in] | This | Pointer to the EFI_KMS_PROTOCOL instance. |
[in] | Client | Pointer to a valid EFI_KMS_CLIENT_INFO structure. |
[in] | KeyIdentifierSize | Pointer to the size in bytes of the KeyIdentifier variable. |
[in] | KeyIdentifier | Pointer to the key identifier associated with this key. |
[in,out] | KeyAttributesCount | Pointer to the number of EFI_KMS_KEY_ATTRIBUTE structures to associate with the Key. On normal returns, this number will be updated with the number of key attributes successfully processed. |
[in,out] | KeyAttributes | Pointer to an array of EFI_KMS_KEY_ATTRIBUTE structures providing the attribute information to associate with the key. On input, the values for the fields in the structure are completely filled in. On return the KeyAttributeStatus field will reflect the result of the operation for each key attribute request. |
[in,out] | ClientDataSize | Pointer to the size, in bytes, of an arbitrary block of data specified by the ClientData parameter. This parameter may be NULL, in which case the ClientData parameter will be ignored and no data will be transferred to or from the KMS. If the parameter is not NULL, then ClientData must be a valid pointer. If the value pointed to is 0, no data will be transferred to the KMS, but data may be returned by the KMS. For all non-zero values *ClientData will be transferred to the KMS, which may also return data to the caller. In all cases, the value upon return to the caller will be the size of the data block returned to the caller, which will be zero if no data is returned from the KMS. |
[in,out] | ClientData | Pointer to a pointer to an arbitrary block of data of ClientDataSize that is to be passed directly to the KMS if it supports the use of client data. This parameter may be NULL if and only if the ClientDataSize parameter is also NULL. Upon return to the caller, *ClientData points to a block of data of ClientDataSize that was returned from the KMS. If the returned value for *ClientDataSize is zero, then the returned value for *ClientData must be NULL and should be ignored by the caller. The KMS protocol consumer is responsible for freeing all valid buffers used for client data regardless of whether they are allocated by the caller for input to the function or by the implementation for output back to the caller. |
EFI_SUCCESS | Successfully added all requested key attributes. | |
EFI_OUT_OF_RESOURCES | Could not allocate required resources. | |
EFI_TIMEOUT | Timed out waiting for device or key server. Check individual key attribute request(s) to see which ones may have been processed. | |
EFI_BUFFER_TOO_SMALL | If multiple keys attributes are associated with a single key identifier, and the attributes buffer does not contain enough structures (KeyAttributesCount) to contain all the data, then the available structures will be filled and KeyAttributesCount will be updated to indicate the number of key attributes which could not be processed. The status of each key attribute is also updated indicating success or failure for that attribute in case there are other errors for those attributes that could be processed. | |
EFI_ACCESS_DENIED | Access was denied by the device or the key server; OR a ClientId is required by the server and either none or an invalid id was provided. | |
EFI_DEVICE_ERROR | Device or key server error. Check individual key attribute request(s) (i.e. key attribute status for each) to see which ones may have been processed. | |
EFI_INVALID_PARAMETER | This is NULL, ClientId is required but it is NULL, KeyAttributesCount is NULL, or KeyAttributes is NULL, or KeyIdentifierSize is NULL, or KeyIdentifer is NULL. | |
EFI_NOT_FOUND | The KeyIdentifier could not be found. On return the KeyAttributesCount contains the number of attributes processed. Individual structures will reflect the status of the processing for that structure. | |
EFI_UNSUPPORTED | The implementation/KMS does not support this function. |
[in] | This | Pointer to the EFI_KMS_PROTOCOL instance. |
[in] | Client | Pointer to a valid EFI_KMS_CLIENT_INFO structure. |
[in] | KeyIdentifierSize | Pointer to the size in bytes of the KeyIdentifier variable. |
[in] | KeyIdentifier | Pointer to the key identifier associated with this key. |
[in,out] | KeyAttributesCount | Pointer to the number of EFI_KMS_KEY_ATTRIBUTE structures to associate with the Key. On input, the count value is one or more. On normal returns, this number will be updated with the number of key attributes successfully processed. |
[in,out] | KeyAttributes | Pointer to an array of EFI_KMS_KEY_ATTRIBUTE structures providing the attribute information to associate with the key. On input, the values for the fields in the structure are completely filled in. On return the KeyAttributeStatus field will reflect the result of the operation for each key attribute request. |
[in,out] | ClientDataSize | Pointer to the size, in bytes, of an arbitrary block of data specified by the ClientData parameter. This parameter may be NULL, in which case the ClientData parameter will be ignored and no data will be transferred to or from the KMS. If the parameter is not NULL, then ClientData must be a valid pointer. If the value pointed to is 0, no data will be transferred to the KMS, but data may be returned by the KMS. For all non-zero values *ClientData will be transferred to the KMS, which may also return data to the caller. In all cases, the value upon return to the caller will be the size of the data block returned to the caller, which will be zero if no data is returned from the KMS. |
[in,out] | ClientData | Pointer to a pointer to an arbitrary block of data of ClientDataSize that is to be passed directly to the KMS if it supports the use of client data. This parameter may be NULL if and only if the ClientDataSize parameter is also NULL. Upon return to the caller, *ClientData points to a block of data of ClientDataSize that was returned from the KMS. If the returned value for *ClientDataSize is zero, then the returned value for *ClientData must be NULL and should be ignored by the caller. The KMS protocol consumer is responsible for freeing all valid buffers used for client data regardless of whether they are allocated by the caller for input to the function or by the implementation for output back to the caller. |
EFI_SUCCESS | Successfully deleted all requested key attributes. | |
EFI_OUT_OF_RESOURCES | Could not allocate required resources. | |
EFI_TIMEOUT | Timed out waiting for device or key server. Check individual key attribute request(s) to see which ones may have been processed. | |
EFI_ACCESS_DENIED | Access was denied by the device or the key server; OR a ClientId is required by the server and either none or an invalid id was provided. | |
EFI_DEVICE_ERROR | Device or key server error. Check individual key attribute request(s) (i.e. key attribute status for each) to see which ones may have been processed. | |
EFI_INVALID_PARAMETER | This is NULL, ClientId is required but it is NULL, KeyAttributesCount is NULL, or KeyAttributes is NULL, or KeyIdentifierSize is NULL, or KeyIdentifer is NULL. | |
EFI_NOT_FOUND | The KeyIdentifier could not be found or the attribute could not be found. On return the KeyAttributesCount contains the number of attributes processed. Individual structures will reflect the status of the processing for that structure. | |
EFI_UNSUPPORTED | The implementation/KMS does not support this function. |
[in] | This | Pointer to the EFI_KMS_PROTOCOL instance. |
[in] | Client | Pointer to a valid EFI_KMS_CLIENT_INFO structure. |
[in,out] | KeyAttributesCount | Pointer to a count of the number of key attribute structures that must be matched for each returned key descriptor. On input the count value is one or more. On normal returns, this number will be updated with the number of key attributes successfully processed. |
[in,out] | KeyAttributes | Pointer to an array of EFI_KMS_KEY_ATTRIBUTE structure to search for. On input, the values for the fields in the structure are completely filled in. On return the KeyAttributeStatus field will reflect the result of the operation for each key attribute request. |
[in,out] | KeyDescriptorCount | Pointer to a count of the number of key descriptors matched by this operation. On entry, this number will be zero. On return, this number will be updated to the number of key descriptors successfully found. |
[in,out] | KeyDescriptors | Pointer to an array of EFI_KMS_KEY_DESCRIPTOR structures which describe the keys from the KMS having the KeyAttribute(s) specified. On input, this pointer will be NULL. On output, the array will contain an EFI_KMS_KEY_DESCRIPTOR structure for each key meeting the search criteria. Memory for the array and all KeyValue fields will be allocated with the EfiBootServicesData type and must be freed by the caller when it is no longer needed. Also, the KeyStatus field of each descriptor will reflect the result of the request relative to that key descriptor. |
[in,out] | ClientDataSize | Pointer to the size, in bytes, of an arbitrary block of data specified by the ClientData parameter. This parameter may be NULL, in which case the ClientData parameter will be ignored and no data will be transferred to or from the KMS. If the parameter is not NULL, then ClientData must be a valid pointer. If the value pointed to is 0, no data will be transferred to the KMS, but data may be returned by the KMS. For all non-zero values *ClientData will be transferred to the KMS, which may also return data to the caller. In all cases, the value upon return to the caller will be the size of the data block returned to the caller, which will be zero if no data is returned from the KMS. |
[in,out] | ClientData | Pointer to a pointer to an arbitrary block of data of ClientDataSize that is to be passed directly to the KMS if it supports the use of client data. This parameter may be NULL if and only if the ClientDataSize parameter is also NULL. Upon return to the caller, *ClientData points to a block of data of ClientDataSize that was returned from the KMS. If the returned value for *ClientDataSize is zero, then the returned value for *ClientData must be NULL and should be ignored by the caller. The KMS protocol consumer is responsible for freeing all valid buffers used for client data regardless of whether they are allocated by the caller for input to the function or by the implementation for output back to the caller. |
EFI_SUCCESS | Successfully retrieved all requested keys. | |
EFI_OUT_OF_RESOURCES | Could not allocate required resources. | |
EFI_TIMEOUT | Timed out waiting for device or key server. Check individual key attribute request(s) to see which ones may have been processed. | |
EFI_BUFFER_TOO_SMALL | If multiple keys are associated with the attribute(s), and the KeyValue buffer does not contain enough structures (KeyDescriptorCount) to contain all the key data, then the available structures will be filled and KeyDescriptorCount will be updated to indicate the number of keys which could not be processed. | |
EFI_ACCESS_DENIED | Access was denied by the device or the key server; OR a ClientId is required by the server and either none or an invalid id was provided. | |
EFI_DEVICE_ERROR | Device or key server error. Check individual key attribute request(s) (i.e. key attribute status for each) to see which ones may have been processed. | |
EFI_INVALID_PARAMETER | This is NULL, ClientId is required but it is NULL, KeyDescriptorCount is NULL, or KeyDescriptors is NULL or KeyAttributes is NULL, or KeyAttributesCount is NULL. | |
EFI_NOT_FOUND | One or more EFI_KMS_KEY_ATTRIBUTE structures could not be processed properly. KeyAttributeCount contains the number of structures which were successfully processed. Individual structures will reflect the status of the processing for that structure. | |
EFI_UNSUPPORTED | The implementation/KMS does not support this function. |
[in] | This | Pointer to EFI_PKCS7_VERIFY_PROTOCOL instance. |
[in] | Signature | Points to buffer containing ASN.1 DER-encoded PKCS detached signature. |
[in] | SignatureSize | The size of Signature buffer in bytes. |
[in] | InHash | InHash points to buffer containing the caller calculated hash of the data. The parameter may not be NULL. |
[in] | InHashSize | The size in bytes of InHash buffer. |
[in] | AllowedDb | Pointer to a list of pointers to EFI_SIGNATURE_LIST structures. The list is terminated by a null pointer. The EFI_SIGNATURE_LIST structures contain lists of X.509 certificates of approved signers. Function recognizes signer certificates of type EFI_CERT_X509_GUID. Any hash certificate in AllowedDb list is ignored by this function. Function returns success if signer of the buffer is within this list (and not within RevokedDb). This parameter is required. |
[in] | RevokedDb | Optional pointer to a list of pointers to EFI_SIGNATURE_LIST structures. The list is terminated by a null pointer. List of X.509 certificates of revoked signers and revoked file hashes. Signature verification will always fail if the signer of the file or the hash of the data component of the buffer is in RevokedDb list. This parameter is optional and caller may pass Null if not required. |
[in] | TimeStampDb | Optional pointer to a list of pointers to EFI_SIGNATURE_LIST structures. The list is terminated by a null pointer. This parameter can be used to pass a list of X.509 certificates of trusted time stamp counter-signers. |
EFI_SUCCESS | Signed hash was verified against caller-provided hash of content, the signer's certificate was not found in RevokedDb, and was found in AllowedDb or if in signer is found in both AllowedDb and RevokedDb, the signing was allowed by reference to TimeStampDb as described above, and no hash matching content hash was found in RevokedDb. | |
EFI_SECURITY_VIOLATION | The SignedData buffer was correctly formatted but signer was in RevokedDb or not in AllowedDb. Also returned if matching content hash found in RevokedDb. | |
EFI_COMPROMISED_DATA | Caller provided hash differs from signed hash. Or, caller and encrypted hash are different sizes. | |
EFI_INVALID_PARAMETER | Signature is NULL or SignatureSize is zero. InHash is NULL or InHashSize is zero. AllowedDb is NULL. | |
EFI_ABORTED | Unsupported or invalid format in TimeStampDb, RevokedDb or AllowedDb list contents was detected. | |
EFI_UNSUPPORTED | The Signature buffer was not correctly formatted for processing by the function. |
This A pointer to the EFI_REGULAR_EXPRESSION_PROTOCOL instance. Type EFI_REGULAR_EXPRESSION_PROTOCOL is defined in Section XYZ.
String A pointer to a NULL terminated string to match against the regular expression string specified by Pattern.
Pattern A pointer to a NULL terminated string that represents the regular expression.
SyntaxType A pointer to the EFI_REGEX_SYNTAX_TYPE that identifies the regular expression syntax type to use. May be NULL in which case the function will use its default regular expression syntax type.
Result On return, points to TRUE if String fully matches against the regular expression Pattern using the regular expression SyntaxType. Otherwise, points to FALSE.
Captures A Pointer to an array of EFI_REGEX_CAPTURE objects to receive the captured groups in the event of a match. The full sub-string match is put in Captures[0], and the results of N capturing groups are put in Captures[1:N]. If Captures is NULL, then this function doesn't allocate the memory for the array and does not build up the elements. It only returns the number of matching patterns in CapturesCount. If Captures is not NULL, this function returns a pointer to an array and builds up the elements in the array. CapturesCount is also updated to the number of matching patterns found. It is the caller's responsibility to free the memory pool in Captures and in each CapturePtr in the array elements.
CapturesCount On output, CapturesCount is the number of matching patterns found in String. Zero means no matching patterns were found in the string.
EFI_SUCCESS | The regular expression string matching completed successfully. | |
EFI_UNSUPPORTED | The regular expression syntax specified by SyntaxTypeis not supported by this driver. | |
EFI_DEVICE_ERROR | The regular expression string matching failed due to a hardware or firmware error. | |
EFI_INVALID_PARAMETER | String, Pattern, Result, or CapturesCountis NULL. |
[in] | This | Pointer to EFI_REST_PROTOCOL instance. |
[out] | Time | A pointer to storage to receive a snapshot of the current time of the REST service. |
EFI_SUCCESS | Operation succeeded | |
EFI_INVALID_PARAMETER | This or Time are NULL. | |
EFI_UNSUPPORTED | The RESTful service does not support returning the time. | |
EFI_DEVICE_ERROR | An unexpected system or network error occurred. |
[in] | This | A pointer to the EFI_RNG_PROTOCOL instance. |
[in] | RNGAlgorithm | A pointer to the EFI_RNG_ALGORITHM that identifies the RNG algorithm to use. May be NULL in which case the function will use its default RNG algorithm. |
[in] | RNGValueLength | The length in bytes of the memory buffer pointed to by RNGValue. The driver shall return exactly this numbers of bytes. |
[out] | RNGValue | A caller-allocated memory buffer filled by the driver with the resulting RNG value. |
EFI_SUCCESS | The RNG value was returned successfully. | |
EFI_UNSUPPORTED | The algorithm specified by RNGAlgorithm is not supported by this driver. | |
EFI_DEVICE_ERROR | An RNG value could not be retrieved due to a hardware or firmware error. | |
EFI_NOT_READY | There is not enough random data available to satisfy the length requested by RNGValueLength. | |
EFI_INVALID_PARAMETER | RNGValue is NULL or RNGValueLength is zero. |
This | A pointer to the EFI_FILE_PROTOCOL instance that is the file handle to write data to. | |
Token | A pointer to the token associated with the transaction. |
EFI_SUCCESS | If Event is NULL (blocking I/O): The data was read successfully. If Event is not NULL (asynchronous I/O): The request was successfully queued for processing. | |
EFI_UNSUPPORTED | Writes to open directory files are not supported. | |
EFI_NO_MEDIA | The device has no medium. | |
EFI_DEVICE_ERROR | The device reported an error. | |
EFI_DEVICE_ERROR | An attempt was made to write to a deleted file. | |
EFI_VOLUME_CORRUPTED | The file system structures are corrupted. | |
EFI_WRITE_PROTECTED | The file or medium is write-protected. | |
EFI_ACCESS_DENIED | The file was opened read only. | |
EFI_VOLUME_FULL | The volume is full. | |
EFI_OUT_OF_RESOURCES | Unable to queue the request due to lack of resources. |
This | A pointer to the EFI_FILE_PROTOCOL instance that is the file handle to flush. | |
Token | A pointer to the token associated with the transaction. |
EFI_SUCCESS | If Event is NULL (blocking I/O): The data was read successfully. If Event is not NULL (asynchronous I/O): The request was successfully queued for processing. | |
EFI_NO_MEDIA | The device has no medium. | |
EFI_DEVICE_ERROR | The device reported an error. | |
EFI_VOLUME_CORRUPTED | The file system structures are corrupted. | |
EFI_WRITE_PROTECTED | The file or medium is write-protected. | |
EFI_ACCESS_DENIED | The file was opened read-only. | |
EFI_VOLUME_FULL | The volume is full. | |
EFI_OUT_OF_RESOURCES | Unable to queue the request due to lack of resources. |
In case of success the SCardHandle can be used.
If the ScardCsn is NULL the connection is established with the first Smart Card the protocol finds in its table of Smart Card present and supported. Else it establish context with the Smart Card whose CSN given by ScardCsn.
If ScardAid is not NULL the function returns the Smart Card AID the protocol supports. After a successful connect the SCardHandle will remain existing even in case Smart Card removed from Smart Card reader, but all function invoking this SCardHandle will fail. SCardHandle is released only on Disconnect.
[in] | This | Indicates a pointer to the calling context. |
[out] | SCardHandle | Handle on Smart Card connection. |
[in] | ScardCsn | CSN of the Smart Card the connection has to be established. |
[out] | ScardAid | AID of the Smart Card the connection has been established. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | SCardHandle is NULL. | |
EFI_NO_MEDIA | No Smart Card supported by protocol is present, Smart Card with CSN ScardCsn or Reader has been removed. A Disconnect should be performed. |
The Disconnect function releases the connection previously established by a Connect. In case the Smart Card or the Smart Card reader has been removed before this call, this function returns EFI_SUCCESS.
[in] | This | Indicates a pointer to the calling context. |
[in] | SCardHandle | Handle on Smart Card connection to release. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | No connection for SCardHandle value. |
[in] | This | Indicates a pointer to the calling context. |
[in] | SCardHandle | Handle on Smart Card connection. |
[out] | Csn | The Card Serial number, 16 bytes array. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | No connection for SCardHandle value. | |
EFI_NO_MEDIA | Smart Card or Reader of SCardHandle connection has been removed. A Disconnect should be performed. |
[in] | This | Indicates a pointer to the calling context. |
[in] | SCardHandle | Handle on Smart Card connection. |
[in,out] | ReaderNameLength | On input, a pointer to the variable that holds the maximal size, in bytes, of ReaderName. On output, the required size, in bytes, for ReaderName. |
[out] | ReaderName | A pointer to a NULL terminated string that will contain the reader name. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | No connection for SCardHandle value. | |
EFI_INVALID_PARAMETER | ReaderNameLength is NULL. | |
EFI_NO_MEDIA | Smart Card or Reader of SCardHandle connection has been removed. A Disconnect should be performed. |
The VerifyPinfunction presents a PIN code to the Smart Card.
If Smart Card found the PIN code correct the user is considered authenticated to current application, and the function returns TRUE.
Negative or null PinSize value rejected if PinCodeis not NULL.
A NULL PinCodebuffer means the application didn't know the PIN, in that case:
In PinCode buffer, the PIN value is always given in plaintext, in case of secure messaging the SMART_CARD_EDGE_PROTOCOL will be in charge of all intermediate treatments to build the correct Smart Card APDU.
[in] | This | Indicates a pointer to the calling context. |
[in] | SCardHandle | Handle on Smart Card connection. |
[in] | PinSize | PIN code buffer size. |
[in] | PinCode | PIN code to present to the Smart Card. |
[out] | PinResult | Result of PIN code presentation to the Smart Card. TRUE when Smard Card founds the PIN code correct. |
[out] | RemainingAttempts | Number of attempts still possible. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_UNSUPPORTED | Pinsize < 0 and Secure PIN Entry functionality not supported. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | No connection for SCardHandle value. | |
EFI_INVALID_PARAMETER | Bad value for PinSize: value not supported by Smart Card or, negative with PinCode not null. | |
EFI_INVALID_PARAMETER | PinResult is NULL. | |
EFI_NO_MEDIA | Smart Card or Reader of SCardHandle connection has been removed. A Disconnect should be performed. |
The number of attempts to present a correct PIN is limited and depends on Smart Card and on PIN.
This function will retrieve the number of remaining possible attempts.
[in] | This | Indicates a pointer to the calling context. |
[in] | SCardHandle | Handle on Smart Card connection. |
[out] | RemainingAttempts | Number of attempts still possible. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | No connection for SCardHandle value. | |
EFI_INVALID_PARAMETER | RemainingAttempts is NULL. | |
EFI_NO_MEDIA | Smart Card or Reader of SCardHandle connection has been removed. A Disconnect should be performed. |
The function is generic for any kind of data, but driver and application must share an EFI_GUID that identify the data.
[in] | This | Indicates a pointer to the calling context. |
[in] | SCardHandle | Handle on Smart Card connection. |
[in] | DataId | The type identifier of the data to get. |
[in,out] | DataSize | On input, in bytes, the size of Data. On output, in bytes, the size of buffer required to store the specified data. |
[out] | Data | The data buffer in which the data is returned. The type of the data buffer is associated with the DataId. Ignored if *DataSize is 0. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | No connection for SCardHandle value. | |
EFI_INVALID_PARAMETER | DataId is NULL. | |
EFI_INVALID_PARAMETER | DataSize is NULL. | |
EFI_INVALID_PARAMETER | Data is NULL, and *DataSize is not zero. | |
EFI_NOT_FOUND | DataId unknown for this driver. | |
EFI_BUFFER_TOO_SMALL | The size of Data is too small for the specified data and the required size is returned in DataSize. | |
EFI_ACCESS_DENIED | Operation not performed, conditions not fulfilled. PIN not verified. | |
EFI_NO_MEDIA | Smart Card or Reader of SCardHandle connection has been removed. A Disconnect should be performed. |
The function returns a series of items in TLV (Tag Length Value) format.
First TLV item is the header item that gives the number of following containers (0x00, 0x01, Nb containers).
All these containers are a series of 4 TLV items:
[in] | This | Indicates a pointer to the calling context. |
[in] | SCardHandle | Handle on Smart Card connection. |
[in,out] | CredentialSize | On input, in bytes, the size of buffer to store the list of credential. On output, in bytes, the size of buffer required to store the entire list of credentials. |
[out] | CredentialList | List of credentials stored into the Smart Card. A list of TLV (Tag Length Value) elements organized in containers array. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | No connection for SCardHandle value. | |
EFI_INVALID_PARAMETER | CredentialSize is NULL. | |
EFI_INVALID_PARAMETER | CredentialList is NULL, if CredentialSize is not zero. | |
EFI_BUFFER_TOO_SMALL | The size of CredentialList is too small for the specified data and the required size is returned in CredentialSize. | |
EFI_NO_MEDIA | Smart Card or Reader of SCardHandle connection has been removed. A Disconnect should be performed. |
This function signs data, actually it is the hash of these data that is given to the function.
SignatureData buffer shall be big enough for signature. Signature size is function key size and key type.
[in] | This | Indicates a pointer to the calling context. |
[in] | SCardHandle | Handle on Smart Card connection. |
[in] | KeyId | Identifier of the key container, retrieved in a key index item of credentials. |
[in] | KeyType | The key type, retrieved in a key type item of credentials. |
[in] | HashAlgorithm | Hash algorithm used to hash the, one of:
|
[in] | PaddingMethod | Padding method used jointly with hash algorithm, one of:
|
[in] | HashedData | Hash of the data to sign. Size is function of the HashAlgorithm. |
[out] | SignatureData | Resulting signature with private key KeyId. Size is function of the KeyType and key size retrieved in the associated key size item of credentials. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | No connection for SCardHandle value. | |
EFI_INVALID_PARAMETER | KeyId is not valid. | |
EFI_INVALID_PARAMETER | KeyType is not valid or not corresponding to KeyId. | |
EFI_INVALID_PARAMETER | HashAlgorithm is NULL. | |
EFI_INVALID_PARAMETER | HashAlgorithm is not valid. | |
EFI_INVALID_PARAMETER | PaddingMethod is NULL. | |
EFI_INVALID_PARAMETER | PaddingMethod is not valid. | |
EFI_INVALID_PARAMETER | HashedData is NULL. | |
EFI_INVALID_PARAMETER | SignatureData is NULL. | |
EFI_ACCESS_DENIED | Operation not performed, conditions not fulfilled. PIN not verified. | |
EFI_NO_MEDIA | Smart Card or Reader of SCardHandle connection has been removed. A Disconnect should be performed. |
The function decrypts some PKI/RSA encrypted data with private key securely stored into the Smart Card.
The KeyId must reference a key of type SC_EDGE_RSA_EXCHANGE.
[in] | This | Indicates a pointer to the calling context. |
[in] | SCardHandle | Handle on Smart Card connection. |
[in] | KeyId | Identifier of the key container, retrieved in a key index item of credentials. |
[in] | HashAlgorithm | Hash algorithm used to hash the, one of:
|
[in] | PaddingMethod | Padding method used jointly with hash algorithm, one of:
|
[in] | EncryptedSize | Size of data to decrypt. |
[in] | EncryptedData | Data to decrypt |
[in,out] | PlaintextSize | On input, in bytes, the size of buffer to store the decrypted data. On output, in bytes, the size of buffer required to store the decrypted data. |
[out] | PlaintextData | Buffer for decrypted data, padding removed. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | No connection for SCardHandle value. | |
EFI_INVALID_PARAMETER | KeyId is not valid or associated key not of type SC_EDGE_RSA_EXCHANGE. | |
EFI_INVALID_PARAMETER | HashAlgorithm is NULL. | |
EFI_INVALID_PARAMETER | HashAlgorithm is not valid. | |
EFI_INVALID_PARAMETER | PaddingMethod is NULL. | |
EFI_INVALID_PARAMETER | PaddingMethod is not valid. | |
EFI_INVALID_PARAMETER | EncryptedSize is 0. | |
EFI_INVALID_PARAMETER | EncryptedData is NULL. | |
EFI_INVALID_PARAMETER | PlaintextSize is NULL. | |
EFI_INVALID_PARAMETER | PlaintextData is NULL. | |
EFI_ACCESS_DENIED | Operation not performed, conditions not fulfilled. PIN not verified. | |
EFI_BUFFER_TOO_SMALL | PlaintextSize is too small for the plaintext data and the required size is returned in PlaintextSize. | |
EFI_NO_MEDIA | Smart Card or Reader of SCardHandle connection has been removed. A Disconnect should be performed. |
The function compute a DH agreement that should be diversified togenerate a symmetric key to proceed encryption or decryption.
The application and the Smart Card shall agree on the diversification process.
The KeyId must reference a key of one of the types: SC_EDGE_ECDH_256, SC_EDGE_ECDH_384 or SC_EDGE_ECDH_521.
[in] | This | Indicates a pointer to the calling context. |
[in] | SCardHandle | Handle on Smart Card connection. |
[in] | KeyId | Identifier of the key container, retrieved in a key index item of credentials. |
[in] | dataQx | Public key x coordinate. Size is the same as key size for KeyId. Stored in big endian format. |
[in] | dataQy | Public key y coordinate. Size is the same as key size for KeyId. Stored in big endian format. |
[out] | DHAgreement | Buffer for DH agreement computed. Size must be bigger or equal to key size for KeyId. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | No connection for SCardHandle value. | |
EFI_INVALID_PARAMETER | KeyId is not valid. | |
EFI_INVALID_PARAMETER | dataQx is NULL. | |
EFI_INVALID_PARAMETER | dataQy is NULL. | |
EFI_INVALID_PARAMETER | DHAgreement is NULL. | |
EFI_ACCESS_DENIED | Operation not performed, conditions not fulfilled. PIN not verified. | |
EFI_NO_MEDIA | Smart Card or Reader of SCardHandle connection has been removed. A Disconnect should be performed. |
The SCardDisconnect function releases the lock previously taken by SCardConnect. In case the smart card has been removed before this call, thisfunction returns EFI_SUCCESS. If there is no previous call to SCardConnect, this function returns EFI_SUCCESS.
[in] | This | Indicates a pointer to the calling context. |
[in] | CardAction | Codes for card action. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_INVALID_PARAMETER | This is NULL | |
EFI_INVALID_PARAMETER | CardAction value is unknown. | |
EFI_UNSUPPORTED | Reader does not support Eject card feature (disconnect was not performed). | |
EFI_DEVICE_ERROR | Any other error condition, typically a reader removal. |
The SCardStatusfunction retrieves basic reader and card information.
If ReaderName, State, CardProtocolor Atris NULL, the function does not fail but does not fill in such variables.
If EFI_SUCCESS is not returned, ReaderName and Atr contents shall not be considered as valid.
[in] | This | Indicates a pointer to the calling context. |
[out] | ReaderName | A pointer to a NULL terminated string that will contain the reader name. |
[in,out] | ReaderNameLength | On input, a pointer to the variablethat holds the maximal size, in bytes,of ReaderName. On output, the required size, in bytes, for ReaderName. |
[out] | State | Current state of the smart card reader. |
[out] | CardProtocol | Current protocol used to communicate with the smart card. |
[out] | Atr | A pointer to retrieve the ATR of the smart card. |
[in,out] | AtrLength | On input, a pointer to hold the maximum size, in bytes, of Atr(usually 33). On output, the required size, inbytes, for the smart card ATR. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_INVALID_PARAMETER | This is NULL | |
EFI_INVALID_PARAMETER | ReaderName is not NULL but ReaderNameLength is NULL | |
EFI_INVALID_PARAMETER | Atr is not NULL but AtrLength is NULL | |
EFI_BUFFER_TOO_SMALL | ReaderNameLength is not big enough to hold the reader name. ReaderNameLength has been updated to the required value. | |
EFI_BUFFER_TOO_SMALL | AtrLength is not big enough to hold the ATR. AtrLength has been updated to the required value. | |
EFI_DEVICE_ERROR | Any other error condition, typically a reader removal. |
The protocol to use to communicate with the smart card has been selected through SCardConnectcall.
In case RAPDULength indicates a buffer too small to holdthe response APDU, the function fails with EFI_BUFFER_TOO_SMALL.
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOLinstance. |
[in] | CAPDU | A pointer to a byte array thatcontains the Command APDU to send to the smart card or reader. |
[in] | CAPDULength | Command APDU size, in bytes. |
[out] | RAPDU | A pointer to a byte array that will contain the Response APDU. |
[in,out] | RAPDULength | On input, the maximum size, inbytes, of the Response APDU. On output, the size, in bytes, of the Response APDU. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | CAPDU is NULL or CAPDULength is 0. | |
EFI_BUFFER_TOO_SMALL | RAPDULength is not big enough to hold the response APDU. RAPDULength has been updated to the required value. | |
EFI_NO_MEDIA | There is no card in the reader. | |
EFI_NOT_READY | Card is not powered. | |
EFI_PROTOCOL_ERROR | A protocol error has occurred. | |
EFI_TIMEOUT | The reader did not respond. | |
EFI_ACCESS_DENIED | A communication with the reader/card is already pending. | |
EFI_DEVICE_ERROR | Any other error condition, typically a reader removal. |
This function gives direct control to send commands to the driver or the reader. The ControlCode to use is vendor dependant; the only standard code defined is the one to get PC/SC part 10 features.
InBuffer and Outbuffer may be NULL when ControlCode operation does not require them.
[in] | This | Indicates a pointer to the calling context. |
[in] | ControlCode | The control code for the operation to perform. |
[in] | InBuffer | A pointer to the input parameters. |
[in] | InBufferLength | Size, in bytes, of input parameters. |
[out] | OutBuffer | A pointer to the output parameters. |
[in,out] | OutBufferLength | On input, maximal size, in bytes, to store output parameters. On output, the size, in bytes, of output parameters. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | ControlCode requires input parameters but: InBuffer is NULL or InBufferLenth is NULL or InBuffer is not NULL but InBufferLenth is less than expected. | |
EFI_INVALID_PARAMETER | OutBuffer is not NULL but OutBufferLength is NULL. | |
EFI_UNSUPPORTED | ControlCode is not supported. | |
EFI_BUFFER_TOO_SMALL | OutBufferLength is not big enough to hold the output parameters. OutBufferLength has been updated to the required value. | |
EFI_NO_MEDIA | There is no card in the reader and the control code specified requires one. | |
EFI_NOT_READY | ControlCode requires a powered card to operate. | |
EFI_PROTOCOL_ERROR | A protocol error has occurred. | |
EFI_TIMEOUT | The reader did not respond. | |
EFI_ACCESS_DENIED | A communication with the reader/card is already pending. | |
EFI_DEVICE_ERROR | Any other error condition, typically a reader removal. |
Possibly supported attrib values are listed in "PC/SC specification, Part 3: Requirements for PC-Connected Interface Devices".
[in] | This | Indicates a pointer to the calling context. |
[in] | Attrib | Identifier for the attribute to retrieve. |
[out] | OutBuffer | A pointer to a buffer that will contain attribute data. |
[in,out] | OutBufferLength | On input, maximal size, in bytes, to store attribute data. On output, the size, in bytes, of attribute data. |
EFI_SUCCESS | The requested command completed successfully. | |
EFI_INVALID_PARAMETER | This is NULL. | |
EFI_INVALID_PARAMETER | OutBuffer is NULL or OutBufferLength is 0. | |
EFI_BUFFER_TOO_SMALL | OutBufferLength is not big enough to hold the output parameters. OutBufferLength has been updated to the required value. | |
EFI_UNSUPPORTED | Attribis not supported | |
EFI_NO_MEDIA | There is no card in the reader and Attrib value requires one. | |
EFI_NOT_READY | Attrib requires a powered card to operate. | |
EFI_PROTOCOL_ERROR | A protocol error has occurred. | |
EFI_TIMEOUT | The reader did not respond. | |
EFI_DEVICE_ERROR | Any other error condition, typically a reader removal. |
[in] | This | Indicates the calling context |
[in] | EventLogFormat | The type of the event log for which the information is requested. |
[out] | EventLogLocation | A pointer to the memory address of the event log. |
[out] | EventLogLastEntry | If the Event Log contains more than one entry, this is a pointer to the address of the start of the last entry in the event log in memory. |
[out] | EventLogTruncated | If the Event Log is missing at least one entry because an event would have exceeded the area allocated for events, this value is set to TRUE. Otherwise, the value will be FALSE and the Event Log will be complete. |
EFI_SUCCESS | Operation completed successfully. | |
EFI_INVALID_PARAMETER | One or more of the parameters are incorrect (e.g. asking for an event log whose format is not supported). |
[in] | This | Indicates the calling context |
[in] | Flags | Bitmap providing additional information. |
[in] | DataToHash | Physical address of the start of the data buffer to be hashed. |
[in] | DataToHashLen | The length in bytes of the buffer referenced by DataToHash. |
[in] | EfiTcgEvent | Pointer to data buffer containing information about the event. |
EFI_SUCCESS | Operation completed successfully. | |
EFI_DEVICE_ERROR | The command was unsuccessful. | |
EFI_VOLUME_FULL | The extend operation occurred, but the event could not be written to one or more event logs. | |
EFI_INVALID_PARAMETER | One or more of the parameters are incorrect. | |
EFI_UNSUPPORTED | The PE/COFF image type is not supported. |
[in] | This | Indicates the calling context |
[in] | InputParameterBlockSize | Size of the TPM input parameter block. |
[in] | InputParameterBlock | Pointer to the TPM input parameter block. |
[in] | OutputParameterBlockSize | Size of the TPM output parameter block. |
[in] | OutputParameterBlock | Pointer to the TPM output parameter block. |
EFI_SUCCESS | The command byte stream was successfully sent to the device and a response was successfully received. | |
EFI_DEVICE_ERROR | The command was not successfully sent to the device or a response was not successfully received from the device. | |
EFI_INVALID_PARAMETER | One or more of the parameters are incorrect. | |
EFI_BUFFER_TOO_SMALL | The output parameter block is too small. |
[in] | This | Indicates the calling context |
[out] | ActivePcrBanks | Pointer to the variable receiving the bitmap of currently active PCR banks. |
EFI_SUCCESS | The bitmap of active PCR banks was stored in the ActivePcrBanks parameter. | |
EFI_INVALID_PARAMETER | One or more of the parameters are incorrect. |
[in] | This | Indicates the calling context |
[in] | ActivePcrBanks | Bitmap of the requested active PCR banks. At least one bit SHALL be set. |
EFI_SUCCESS | The bitmap in ActivePcrBank parameter is already active. | |
EFI_INVALID_PARAMETER | One or more of the parameters are incorrect. |
[in] | This | Indicates the calling context |
[out] | OperationPresent | Non-zero value to indicate a SetActivePcrBank operation was invoked during the last boot. |
[out] | Response | The response from the SetActivePcrBank request. |
EFI_SUCCESS | The result value could be returned. | |
EFI_INVALID_PARAMETER | One or more of the parameters are incorrect. |
[in] | This | Indicates the calling context |
[in] | EventLogFormat | The type of the event log for which the information is requested. |
[out] | EventLogLocation | A pointer to the memory address of the event log. |
[out] | EventLogLastEntry | If the Event Log contains more than one entry, this is a pointer to the address of the start of the last entry in the event log in memory. |
[out] | EventLogTruncated | If the Event Log is missing at least one entry because an event would have exceeded the area allocated for events, this value is set to TRUE. Otherwise, the value will be FALSE and the Event Log will be complete. |
EFI_SUCCESS | Operation completed successfully. | |
EFI_INVALID_PARAMETER | One or more of the parameters are incorrect (e.g. asking for an event log whose format is not supported). |
[in] | This | Indicates the calling context |
[in] | Flags | Bitmap providing additional information. |
[in] | DataToHash | Physical address of the start of the data buffer to be hashed. |
[in] | DataToHashLen | The length in bytes of the buffer referenced by DataToHash. |
[in] | Event | Pointer to data buffer containing information about the event. |
EFI_SUCCESS | Operation completed successfully. | |
EFI_DEVICE_ERROR | The command was unsuccessful. | |
EFI_VOLUME_FULL | The extend operation occurred, but the event could not be written to one or more event logs. | |
EFI_INVALID_PARAMETER | One or more of the parameters are incorrect. | |
EFI_UNSUPPORTED | The PE/COFF image type is not supported. |
[in] | This | Indicates the calling context |
[in] | InputParameterBlockSize | Size of the TrEE input parameter block. |
[in] | InputParameterBlock | Pointer to the TrEE input parameter block. |
[in] | OutputParameterBlockSize | Size of the TrEE output parameter block. |
[in] | OutputParameterBlock | Pointer to the TrEE output parameter block. |
EFI_SUCCESS | The command byte stream was successfully sent to the device and a response was successfully received. | |
EFI_DEVICE_ERROR | The command was not successfully sent to the device or a response was not successfully received from the device. | |
EFI_INVALID_PARAMETER | One or more of the parameters are incorrect. | |
EFI_BUFFER_TOO_SMALL | The output parameter block is too small. |
Assuming that the hardware has already been initialized, this function configures the endpoints using the device information supplied by DeviceInfo, activates the port, and starts receiving USB events.
This function must ignore the bMaxPacketSize0field of the Standard Device Descriptor and the wMaxPacketSize field of the Standard Endpoint Descriptor that are made available through DeviceInfo.
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOL instance. |
[out] | DeviceInfo | A pointer to EFI_USBFN_DEVICE_INFO instance. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. | |
EFI_DEVICE_ERROR | The physical device reported an error. | |
EFI_NOT_READY | The physical device is busy or not ready to process this request. | |
EFI_OUT_OF_RESOURCES | The request could not be completed due to lack of resources. |
If the BusSpeed is UsbBusSpeedUnknown, the maximum speed the underlying controller supports is assumed.
This protocol currently does not support isochronous or interrupt transfers. Future revisions of this protocol may eventually support it.
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOLinstance. |
[in] | EndpointType | Endpoint type as defined as EFI_USB_ENDPOINT_TYPE. |
[in] | BusSpeed | Bus speed as defined as EFI_USB_BUS_SPEED. |
[out] | MaxPacketSize | The maximum packet size, in bytes, of the specified endpoint type. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. | |
EFI_DEVICE_ERROR | The physical device reported an error. | |
EFI_NOT_READY | The physical device is busy or not ready to process this request. |
If the supplied Buffer isn't large enough, or is NULL, the method fails with EFI_BUFFER_TOO_SMALL and the required size is returned through BufferSize. All returned strings are in Unicode format.
An Id of EfiUsbDeviceInfoUnknown is treated as an invalid parameter.
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOLinstance. |
[in] | Id | The requested information id. |
[in] | BufferSize | On input, the size of the Buffer in bytes. On output, the amount of data returned in Buffer in bytes. |
[out] | Buffer | A pointer to a buffer to returnthe requested information as a Unicode string. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. | |
EFI_DEVICE_ERROR | The physical device reported an error. | |
EFI_BUFFER_TOO_SMALL | Supplied buffer isn't large enough to hold the request string. |
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOL instance. |
[out] | Vid | Returned vendor-id of the device. |
[out] | Pid | Returned product-id of the device. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. | |
EFI_NOT_FOUND | Unable to return the vendor-id or the product-id. |
This function should fail with EFI_INVALID_PARAMETER if the specified direction is incorrect for the endpoint.
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOL instance. |
[in] | EndpointIndex | Indicates the endpoint on which the ongoing transfer needs to be canceled. |
[in] | Direction | Direction of the endpoint. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. | |
EFI_DEVICE_ERROR | The physical device reported an error. | |
EFI_NOT_READY | The physical device is busy or not ready to process this request. |
This function should fail with EFI_INVALID_PARAMETER if the specified direction is incorrect for the endpoint.
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOL instance. |
[in] | EndpointIndex | Indicates the endpoint. |
[in] | Direction | Direction of the endpoint. |
[in,out] | State | Boolean, true value indicates that the endpoint is in a stalled state, false otherwise. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. | |
EFI_DEVICE_ERROR | The physical device reported an error. | |
EFI_NOT_READY | The physical device is busy or not ready to process this request. |
This function should fail with EFI_INVALID_PARAMETER if the specified direction is incorrect for the endpoint.
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOL instance. |
[in] | EndpointIndex | Indicates the endpoint. |
[in] | Direction | Direction of the endpoint. |
[in] | State | Requested stall state on the specified endpoint. True value causes the endpoint to stall; false value clears an existing stall. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. | |
EFI_DEVICE_ERROR | The physical device reported an error. | |
EFI_NOT_READY | The physical device is busy or not ready to process this request. |
A class driver must call EFI_USBFN_IO_PROTOCOL.EventHandler()repeatedly to receive updates on the transfer status and number of bytes transferred on various endpoints.
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOL instance. |
[out] | Message | Indicates the event that initiated this notification. |
[in,out] | PayloadSize | On input, the size of the memory pointed by Payload. On output, the amount ofdata returned in Payload. |
[out] | Payload | A pointer to EFI_USBFN_MESSAGE_PAYLOAD instance to return additional payload for current message. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. | |
EFI_DEVICE_ERROR | The physical device reported an error. | |
EFI_NOT_READY | The physical device is busy or not ready to process this request. | |
EFI_BUFFER_TOO_SMALL | The Supplied buffer is not large enough to hold the message payload. |
A class driver must call EFI_USBFN_IO_PROTOCOL.EventHandler() repeatedly to receive updates on the transfer status and the number of bytes transferred on various endpoints. Upon an update of the transfer status, the Buffer field of the EFI_USBFN_TRANSFER_RESULT structure (as described in the function description for EFI_USBFN_IO_PROTOCOL.EventHandler()) must be initialized with the Buffer pointer that was supplied to this method.
The overview of the call sequence is illustrated in the Figure 54.
This function should fail with EFI_INVALID_PARAMETER if the specified direction is incorrect for the endpoint.
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOL instance. |
[in] | EndpointIndex | Indicates the endpoint on which TX or RX transfer needs to take place. |
[in] | Direction | Direction of the endpoint. |
[in,out] | BufferSize | If Direction is EfiUsbEndpointDirectionDeviceRx: On input, the size of the Bufferin bytes. On output, the amount of data returned in Buffer in bytes. If Direction is EfiUsbEndpointDirectionDeviceTx: On input, the size of the Bufferin bytes. On output, the amount of data transmitted in bytes. |
[in,out] | Buffer | If Direction is EfiUsbEndpointDirectionDeviceRx: The Buffer to return the received data. If Directionis EfiUsbEndpointDirectionDeviceTx: The Buffer that contains the data to be transmitted. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. | |
EFI_DEVICE_ERROR | The physical device reported an error. | |
EFI_NOT_READY | The physical device is busy or not ready to process this request. |
Returns the maximum number of bytes that the underlying controller can accommodate in a single transfer.
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOL instance. |
[out] | MaxTransferSize | The maximum supported transfer size, in bytes. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. | |
EFI_DEVICE_ERROR | The physical device reported an error. | |
EFI_NOT_READY | The physical device is busy or not ready to process this request. |
The AllocateTransferBuffer() function allocates a memory region of Size bytes and returns the address of the allocated memory that satisfies the underlying controller requirements in the location referenced by Buffer.
The allocated transfer buffer must be freed using a matching call to EFI_USBFN_IO_PROTOCOL.FreeTransferBuffer()function.
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOL instance. |
[in] | Size | The number of bytes to allocate for the transfer buffer. |
[out] | Buffer | A pointer to a pointer to the allocated buffer if the call succeeds; undefined otherwise. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. | |
EFI_OUT_OF_RESOURCES | The requested transfer buffer could not be allocated. |
The EFI_USBFN_IO_PROTOCOL.FreeTransferBuffer() function deallocates the memory specified by Buffer. The Buffer that is freed must have been allocated by EFI_USBFN_IO_PROTOCOL.AllocateTransferBuffer().
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOL instance. |
[in] | Buffer | A pointer to the transfer buffer to deallocate. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. |
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOL instance. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. | |
EFI_DEVICE_ERROR | The physical device reported an error. |
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOL instance. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. | |
EFI_DEVICE_ERROR | The physical device reported an error. |
This function can only be called before EFI_USBFN_IO_PROTOCOL.StartController() or after EFI_USBFN_IO_PROTOCOL.StopController() has been called.
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOL instance. |
[in] | EndpointIndex | Indicates the non-control endpoint for which the policy needs to be set. |
[in] | Direction | Direction of the endpoint. |
[in] | PolicyType | Policy type the user is trying to set for the specified non-control endpoint. |
[in] | BufferSize | The size of the Bufferin bytes. |
[in] | Buffer | The new value for the policy parameter that PolicyType specifies. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. | |
EFI_DEVICE_ERROR | The physical device reported an error. | |
EFI_UNSUPPORTED | Changing this policy value is not supported. |
This function can only be called before EFI_USBFN_IO_PROTOCOL.StartController() or after EFI_USBFN_IO_PROTOCOL.StopController() has been called.
[in] | This | A pointer to the EFI_USBFN_IO_PROTOCOL instance. |
[in] | EndpointIndex | Indicates the non-control endpoint for which the policy needs to be set. |
[in] | Direction | Direction of the endpoint. |
[in] | PolicyType | Policy type the user is trying to retrieve for the specified non-control endpoint. |
[in,out] | BufferSize | On input, the size of Bufferin bytes. On output, the amount of data returned in Bufferin bytes. |
[in,out] | Buffer | A pointer to a buffer to return requested endpoint policy value. |
EFI_SUCCESS | The function returned successfully. | |
EFI_INVALID_PARAMETER | A parameter is invalid. | |
EFI_DEVICE_ERROR | The specified policy value is not supported. | |
EFI_BUFFER_TOO_SMALL | Supplied buffer is not large enough to hold requested policy value. |
typedef UINTN EFI_TPL |
Task priority level.
typedef UINT64 EFI_VIRTUAL_ADDRESS |
64-bit virtual memory address.