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Chapter 1

Introduction

1.1 Scope of This Manual

The Physics Reference Manual provides detailed explanations of the physics
implemented in the Geant4 toolkit. The manual’s purpose is threefold:

• to present the theoretical formulation, model, or parameterization of
the physics interactions included in Geant4,

• to describe the probability of the occurrence of an interaction and the
sampling mechanisms required to simulate it, and

• to serve as a reference for toolkit users and developers who wish to
consult the underlying physics of an interaction.

This manual does not discuss code implementation or how to use the
implemented physics interactions in a simulation. These topics are discussed
in the User’s Guide for Application Developers. Details of the object-oriented
design and functionality of the Geant4 toolkit are given in the User’s Guide
for Toolkit Developers. The Installation Guide for Setting up Geant4 in
Your Computing Environment describes how to get the Geant4 code, install
it, and run it.

1.2 Definition of Terms

Several terms used throughout the Physics Reference Manual have specific
meaning within Geant4, but are not well-defined in general usage. The defi-
nitions of these terms are given here.
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• process - a C++ class which describes how and when a specific kind
of physical interaction takes place along a particle track. A given par-
ticle type typically has several processes assigned to it. Occaisionally
“process” refers to the interaction which the process class describes.

• model - a C++ class whose methods implement the details of an in-
teraction, such as its kinematics. One or more models may be assigned
to each process. In sections discussing the theory of an interaction,
“model” may refer to the formulae or parameterization on which the
model class is based.

• Geant3 - a physics simulation tool written in Fortran, and the prede-
cessor of Geant4. Although many references are made to Geant3, no
knowledge of it is required to understand this manual.

1.3 Status of this document

4.12.01 created by D.H. Wright
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Chapter 2

Monte Carlo Methods

The Geant4 toolkit uses a combination of the composition and rejection
Monte Carlo methods. Only the basic formalism of these methods is outlined
here. For a complete account of the Monte Carlo methods, the interested user
is referred to the publications of Butcher and Messel, Messel and Crawford,
or Ford and Nelson [1, 2, 3].
Suppose we wish to sample x in the interval [x1, x2] from the distribution
f(x) and the normalised probability density function can be written as :

f(x) =
n
∑

i=1

Nifi(x)gi(x) (2.1)

where Ni > 0, fi(x) are normalised density functions on [x1, x2] , and 0 ≤
gi(x) ≤ 1.
According to this method, x can sampled in the following way:

1. select a random integer i ∈ {1, 2, · · ·n} with probability proportional
to Ni

2. select a value x0 from the distribution fi(x)

3. calculate gi(x0) and accept x = x0 with probability gi(x0);

4. if x0 is rejected restart from step 1.

It can be shown that this scheme is correct and the mean number of tries to
accept a value is

∑

iNi.
In practice, a good method of sampling from the distribution f(x) has the
following properties:

• all the subdistributions fi(x) can be sampled easily;
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• the rejection functions gi(x) can be evaluated easily/quickly;

• the mean number of tries is not too large.

Thus the different possible decompositions of the distribution f(x) are not
equivalent from the practical point of view (e.g. they can be very different
in computational speed) and it can be useful to optimise the decomposition.
A remark of practical importance : if our distribution is not normalised

∫ x2

x1

f(x)dx = C > 0

the method can be used in the same manner; the mean number of tries in
this case is

∑

iNi/C.

2.1 Status of this document

18.01.02 created by M.Maire.
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Chapter 3

Particle Transport
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3.1 Transportation

The transportation process is responsible for determining the geometrical
limits of a step. It calculates the length of step with which a track will cross
into another volume. When the track actually arrives at a boundary, the
transportation process locates the next volume that it enters.

If the particle is charged and there is an electromagnetic (or potentially
other) field, it is responsible for propagating the particle in this field. It does
this according to an equation of motion. This equation can be provided by
Geant4, for the case a magnetic or EM field, or can be provided by the user
for other fields.

The transportation updates the time of flight of a particle, utilising its
initial velocity.

Some additional details on motion in fields:
In order to intersect the model Geant4 geometry of a detector or setup,

the curved trajectory followed by a charged particle is split into ’chords seg-
ments’. A chord is a straight line segment between two trajectory points.
Chords are created utilizing a criterion for the maximum estimated distance
between a curve point and the chord. This distance is also known as the
sagitta.

The equations of motions are solved utilising Runge Kutta methods.
Runge Kutta methods of different can be utilised for fields depending on the
numerical method utilised for approximating the field. Specialised methods
for near-constant magnetic fields are under development.

3.1.1 Status of This Document

17.11.11 minor revisions by V. Ivanchenko
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3.2 True Step Length

Geant4 simulation of particle transport is performed step by step [1]. A
true step length for a next physics interaction is randomly sampled using the
mean free path of the interaction or by various step limitations established by
different Geant4 components. The smallest step limit defines the new true
step length.

3.2.1 The Interaction Length or Mean Free Path

Computation of mean free path of a particle in a media is performed in
Geant4 using cross section of a particular physics process and density of
atoms. In a simple material the number of atoms per volume is:

n =
N ρ

A

where:

N Avogadro’s number

ρ density of the medium

A mass of a mole

In a compound material the number of atoms per volume of the ith ele-
ment is:

ni =
N ρwi

Ai

where:

wi proportion by mass of the ith element

Ai mass of a mole of the ith element

The mean free path of a process, λ, also called the interaction length,
can be given in terms of the total cross section :

λ(E) =

(

∑

i

[ni · σ(Zi, E)]

)−1

where σ(Z,E) is the total cross section per atom of the process and
∑

i runs
over all elements composing the material.
∑

i

[niσ(Zi, E)] is also called the macroscopic cross section. The mean free

path is the inverse of the macroscopic cross section.
Cross sections per atom and mean free path values may be tabulated during
initialisation.
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3.2.2 Determination of the Interaction Point

The mean free path, λ, of a particle for a given process depends on the
medium and cannot be used directly to sample the probability of an inter-
action in a heterogeneous detector. The number of mean free paths which a
particle travels is:

nλ =

∫ x2

x1

dx

λ(x)
, (3.1)

which is independent of the material traversed. If nr is a random variable
denoting the number of mean free paths from a given point to the point of
interaction, it can be shown that nr has the distribution function:

P (nr < nλ) = 1 − e−nλ (3.2)

The total number of mean free paths the particle travels before reaching the
interaction point, nλ, is sampled at the beginning of the trajectory as:

nλ = − log (η) (3.3)

where η is a random number uniformly distributed in the range (0, 1). nλ is
updated after each step ∆x according the formula:

n′
λ = nλ − ∆x

λ(x)
(3.4)

until the step originating from s(x) = nλ · λ(x) is the shortest and this trig-
gers the specific process.

3.2.3 Step Limitations

The short description given above is the differential approach to particle
transport, which is used in the most popular simulation codes EGS and
Geant3. In this approach besides the other (discrete) processes the contin-
uous energy loss imposes a limit on the step-size too [2], because the cross
section of different processes depend of the energy of the particle. Then it
is assumed that the step is small enough so that the particle cross sections
remain approximately constant during the step. In principle one must use
very small steps in order to insure an accurate simulation, but computing
time increases as the step-size decreases. A good compromise depends on
required accuracy of a concrete simulation. For electromagnetic physics the
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problem is reduced using integral approach, which is described below in sub-
chapter 7.3. However, this only provides effectively correct cross sections but
step limitation is needed also for more precise tracking. Thus, in Geant4 any
process may establish additional step limitation, the most important limits
see below in sub-chapters 7.1.3 and 6.1.6).

3.2.4 Updating the Particle Time

The laboratory time of a particle should be updated after each step:

∆tlab = 0.5∆x(
1

v1

+
1

v2

), (3.5)

where ∆x is a true step length traveled by the particle, v1 and v2 are particle
velocities at the beginning and at the end of the step correspondingly.

3.2.5 Status of This Document

09.10.98 created by L. Urbán.
27.07.01 minor revisions by M. Maire
01.12.03 integral method subsection added by V. Ivanchenko
12.08.04 splitted and partly moved in introduction by M. Maire
25.12.06 minor revision by V. Ivanchenko
15.12.08 minor revision by J. Apostolakis
08.12.10 revisions by V. Ivanchenko
17.11.11 moved to transportation chapter by V. Ivanchenko
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Particle Decay
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Chapter 4

Decay

The decay of particles in flight and at rest is simulated by the G4Decay class.

4.1 Mean Free Path for Decay in Flight

The mean free path λ is calculated for each step using

λ = γβcτ

where τ is the lifetime of the particle and

γ =
1

√

1 − β2
.

β and γ are calculated using the momentum at the beginning of the step.
The decay time in the rest frame of the particle (proper time) is then sampled
and converted to a decay length using β.

4.2 Branching Ratios and Decay Channels

G4Decay selects a decay mode for the particle according to branching ratios
defined in the G4DecayTable class, which is a member of the G4ParticleDefinition
class. Each mode is implemented as a class derived from G4VDecayChannel
and is responsible for generating the secondaries and the kinematics of the
decay. In a given decay channel the daughter particle momenta are calcu-
lated in the rest frame of the parent and then boosted into the laboratory
frame. Polarization is not currently taken into account for either the parent
or its daughters.
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A large number of specific decay channels may be required to simulate
an experiment, ranging from two-body to many-body decays and V − A to
semi-leptonic decays. Most of these are covered by the five decay channel
classes provided by Geant4:
G4PhaseSpaceDecayChannel : phase space decay
G4DalitzDecayChannel : dalitz decay
G4MuonDecayChannel : muon decay
G4TauLeptonicDecayChannel : tau leptonic decay
G4KL3DecayChannel : semi-leptonic decays of kaon .

4.2.1 G4PhaseSpaceDecayChannel

The majority of decays in Geant4 are implemented using the G4PhaseSpaceDecayChannel
class. It simulates phase space decays with isotropic angular distributions in
the center-of-mass system. Three private methods of G4PhaseSpaceDecayChannel
are provided to handle two-, three- and N-body decays:
TwoBodyDecayIt()
ThreeBodyDecayIt()
ManyBodyDecayIt()

Some examples of decays handled by this class are:

π0 → γγ,

Λ → pπ−

and

K0
L → π0π+π−.

4.2.2 G4DalitzDecayChannel

The Dalitz decay

π0 → γ + e+ + e−

and other Dalitz-like decays, such as

K0
L → γ + e+ + e−

and

K0
L → γ + µ+ + µ−
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are simulated by the G4DalitzDecayChannel class. In general, it handles any
decay of the form

P 0 → γ + l+ + l−,

where P 0 is a spin-0 meson of mass M and l± are leptons of mass m. The
angular distribution of the γ is isotropic in the center-of-mass system of the
parent particle and the leptons are generated isotropically and back-to-back
in their center-of-mass frame. The magnitude of the leptons’ momentum is
sampled from the distribution function

f(t) = (1 − t

M2
)
3

(1 +
2m2

t
)

√

1 − 4m2

t
,

where t is the square of the sum of the leptons’ energy in their center-of-mass
frame.

4.2.3 Muon Decay

G4MuonDecayChannel simulates muon decay according to V −A theory. The
electron energy is sampled from the following distribution:

dΓ =
GF

2mµ
5

192π3
2ǫ2(3 − 2ǫ)

where: Γ : decay rate
ǫ : = Ee/Emax

Ee : electron energy
Emax : maximum electron energy = mµ/2

The magnitudes of the two neutrino momenta are also sampled from the
V −A distribution and constrained by energy conservation. The direction of
the electron neutrino is sampled using

cos(θ) = 1 − 2/Ee − 2/Eνe + 2/Ee/Eνe

and the muon anti-neutrino momentum is chosen to conserve momentum.
Currently, neither the polarization of the muon nor the electron is considered
in this class.
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4.2.4 Leptonic Tau Decay

G4TauLeptonicDecayChannel simulates leptonic tau decays according to V −
A theory. This class is valid for both

τ± → e± + ντ + νe

and

τ± → µ± + ντ + νµ

modes.
The energy spectrum is calculated without neglecting lepton mass as

follows:

dΓ =
GF

2mτ
3

24π3
plEl(3Elmτ

2 − 4El
2mτ − 2mτml

2)

where: Γ : decay rate
El : daughter lepton energy (total energy)
pl : daughter lepton momentum
ml : daughter lepton mass

As in the case of muon decay, the energies of the two neutrinos are not
sampled from their V − A spectra, but are calculated so that energy and
momentum are conserved. Polarization of the τ and final state leptons is not
taken into account in this class.

4.2.5 Kaon Decay

The class G4KL3DecayChannel simulates the following four semi-leptonic de-
cay modes of the kaon:

K±
e3 : K± → π0 + e± + ν

K±
µ3 : K± → π0 + µ± + ν

K0
e3 : K0

L → π± + e∓ + ν
K0

µ3 : K0
L → π± + µ∓ + ν

Assuming that only the vector current contributes to K → lπν decays, the
matrix element can be described by using two dimensionless form factors, f+

and f−, which depend only on the momentum transfer t = (PK − Pπ)2.
The Dalitz plot density used in this class is as follows [1]:

ρ (Eπ, Eµ) ∝ f 2
+ (t)[A+Bξ (t) + Cξ (t)2]
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where: A = mK(2EµEν −mKE
′
π) +mµ

2(1
4
E ′

π − Eν)
B = mµ

2(Eν − 1
2
E ′

π)
C = 1

4
mµ

2E ′
π

E ′
π = Eπ

max − Eπ

Here ξ (t) is the ratio of the two form factors

ξ (t) = f− (t)/f+ (t).

f+ (t) is assumed to depend linearly on t, i.e.

f+ (t) = f+ (0)[1 + λ+(t/mπ
2)]

and f− (t) is assumed to be constant due to time reversal invariance.

Two parameters, λ+ and ξ (0) are then used for describing the Dalitz plot
density in this class. The values of these parameters are taken to be the
world average values given by the Particle Data Group [2].

4.3 Status of this document

05.07.12 updated muon decay section - D.H. Wright
10.04.02 re-written by D.H. Wright
02.04.02 editing by Hisaya Kurashige
14.11.01 editing by Hisaya Kurashige

Bibliography

[1] L.M. Chounet, J.M. Gaillard, and M.K. Gaillard, Phys. Reports 4C, 199
(1972).

[2] Review of Particle Physics The European Physical Journal C, 15 (2000).

16



Part III

Electromagnetic Interactions

17



Chapter 5

Gamma Incident
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5.1 Introduction

All processes of gamma interaction with media in Geant4 are happen at the
end of the step, so these interactions are discrete and corresponding processes
are following G4V DiscreteProcess interface.

5.1.1 General Interfaces

There are a number of similar functions for discrete electromagnetic pro-
cesses and for electromagnetic (EM) packages an additional base classes were
designed to provide common computations [1]. Common calculations for
discrete EM processes are performed in the class G4V EmProcess. Derived
classes (5.1) are concrete processes providing initialisation. The physics mod-
els are implemented using the G4V EmModel interface. Each process may
have one or many models defined to be active over a given energy range
and set of G4Regions. Models are implementing computation of energy loss,
cross section and sampling of final state. The list of EM processes and models
for gamma incident is shown in Table 5.1.

5.1.2 Status of This Document

06.12.07 created by V. Ivanchenko
11.12.08 extended list of models by V. Ivanchenko
08.12.10 cleaned up by V. Ivanchenko
20.11.11 updated list of processes/models by V. Ivanchenko
29.11.13 updated list of processes/models by V. Ivanchenko

Bibliography

[1] J. Apostolakis et al., Geometry and physics of the Geant4 toolkit for high
an dmedium energy applications. Rad. Phys. Chem. 78 (2009) 859.
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Table 5.1: List of process and model classes for gamma.

EM process EM model Ref.
G4PhotoElectricEffect G4PEEffectFluoModel 5.2

G4LivermorePhotoElectricModel 9.7
G4LivermorePolarizedPhotoElectricModel
G4PenelopePhotoElectricModel 10.1.5

G4PolarizedPhotoElectricEffect G4PolarizedPEEffectModel 17.1
G4ComptonScattering G4KleinNishinaCompton 5.3

G4KleinNishinaModel 5.3
G4LivermoreComptonModel 9.2
G4LivermoreComptonModelRC
G4LivermorePolarizedComptonModel 9.3
G4LowEPComptonModel 11.1
G4PenelopeComptonModel 10.1.2

G4PolarizedCompton G4PolarizedComptonModel 17.1
G4GammaConversion G4BetheHeitlerModel 5.4

G4PairProductionRelModel
G4LivermoreGammaConversionModel 9.5
G4BoldyshevTripletModel 9.6
G4LivermoreNuclearGammaConversionModel
G4LivermorePolarizedGammaConversionModel
G4PenelopeGammaConvertion 10.1.4

G4PolarizedGammaConversion G4PolarizedGammaConversionModel 17.1
G4RayleighScattering G4LivermoreRayleighModel 9.4

G4LivermorePolarizedRayleighModel
G4PenelopeRayleighModel 10.1.3

G4GammaConversionToMuons 5.5
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5.2 PhotoElectric effect

The photoelectric effect is the ejection of an electron from a material af-
ter a photon has been absorbed by that material. In the standard model
G4PEEffectFluoModel it is simulated by using a parameterized photon ab-
sorption cross section to determine the mean free path, atomic shell data to
determine the energy of the ejected electron, and the K-shell angular distri-
bution to sample the direction of the electron.

5.2.1 Cross Section

The parameterization of the photoabsorption cross section proposed by Biggs
et al. [1] was used :

σ(Z,Eγ) =
a(Z,Eγ)

Eγ
+
b(Z,Eγ)

E2
γ

+
c(Z,Eγ)

E3
γ

+
d(Z,Eγ)

E4
γ

(5.1)

Using the least-squares method, a separate fit of each of the coefficients
a, b, c, d to the experimental data was performed in several energy intervals
[2]. As a rule, the boundaries of these intervals were equal to the correspond-
ing photoabsorption edges. The cross section (and correspondingly mean free
path) are discontinuous and must be computed ’on the fly’ from the formula
5.1.

5.2.2 Final State

Choosing an Element

The binding energies of the shells depend on the atomic number Z of the ma-
terial. In compound materials the ith element is chosen randomly according
to the probability:

Prob(Zi, Eγ) =
natiσ(Zi, Eγ)
∑

i[nati · σi(Eγ)]
.

Shell

A quantum can be absorbed if Eγ > Bshell where the shell energies are taken
from G4AtomicShells data: the closest available atomic shell is chosen. The
photoelectron is emitted with kinetic energy :

Tphotoelectron = Eγ −Bshell(Zi) (5.2)
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Theta Distribution of the Photoelectron

The polar angle of the photoelectron is sampled from the Sauter-Gavrila
distribution (for K-shell) [3], which is correct only to zero order in αZ :

dσ

d(cos θ)
∼ sin2 θ

(1 − β cos θ)4

{

1 +
1

2
γ(γ − 1)(γ − 2)(1 − β cos θ)

}

(5.3)

where β and γ are the Lorentz factors of the photoelectron.
cos θ is sampled from the probability density function :

f(cos θ) =
1 − β2

2β

1

(1 − β cos θ)2
=⇒ cos θ =

(1 − 2r) + β

(1 − 2r)β + 1
(5.4)

The rejection function is :

g(cos θ) =
1 − cos2 θ

(1 − β cos θ)2
[1 + b(1 − β cos θ)] (5.5)

with b = γ(γ − 1)(γ − 2)/2
It can be shown that g(cos θ) is positive ∀ cos θ ∈ [−1, +1], and can be
majored by :

gsup = γ2 [1 + b(1 − β)] if γ ∈ ]1, 2] (5.6)

= γ2 [1 + b(1 + β)] if γ > 2

The efficiency of this method is ∼ 50% if γ < 2, ∼ 25% if γ ∈ [2, 3].

5.2.3 Relaxation

Atomic relaxations can be sampled using the de-excitation module of the low-
energy sub-package 14.1. For that atomic de-excitation option should be acti-
vated. In the physics list sub-library this activation is done automatically for
G4EmLivermorePhysics, G4EmPenelopePhysics, G4EmStandardPhysics option3
and G4EmStandardPhysics option4. For other standard physics constructors
the de-excitation module is already added but is disabled. The simulation of
fluorescence and Auger electron emmision may be enabled for all geometry
via UI commands:

/process/em/fluo true
/process/em/auger true

There is a possiblity to enable atomic deexcitation only for G4Region by
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its name:

/process/em/deexcitation myregion true true false

where three boolean arguments enable/disable fluorescence, Auger electron
production and PIXE (deexcitation induced by ionisation).

5.2.4 Status of this document

09.10.98 created by M. Maire
08.01.02 updated by M. Maire
22.04.02 re-worded by D.H. Wright
02.05.02 modifs in total cross section and final state (M. Maire)
15.11.02 introduction added by D.H. Wright
08.12.10 revision by V. Ivanchenko
20.11.11 revision by V. Ivanchenko
20.12.12 revision by V. Ivanchenko
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5.3 Compton scattering

The Compton scattering is an inelastic gamma scattering on atom with the
ejection of an electron. In the standard sub-package two model G4KleinNishinaCompton
and G4KleinNishinaModel are available. The first model is the fastest, in the
second model atomic shell effects are taken into account.

5.3.1 Cross Section

When simulating the Compton scattering of a photon from an atomic elec-
tron, an empirical cross section formula is used, which reproduces the cross
section data down to 10 keV:

σ(Z,Eγ) =

[

P1(Z)
log(1 + 2X)

X
+
P2(Z) + P3(Z)X + P4(Z)X2

1 + aX + bX2 + cX3

]

. (5.7)

Z = atomic number of the medium

Eγ = energy of the photon

X = Eγ/mc
2

m = electron mass

Pi(Z) = Z(di + eiZ + fiZ
2).

The values of the parameters can be found within the method which computes
the cross section per atom. A fit of the parameters was made to over 511
data points [1, 2] chosen from the intervals

1 ≤ Z ≤ 100

Eγ ∈ [10 keV, 100 GeV].

The accuracy of the fit was estimated to be

∆σ

σ
=

{

≈ 10% for Eγ ≃ 10 keV − 20 keV
≤ 5 − 6% for Eγ > 20 keV

5.3.2 Sampling the Final State

The Klein-Nishina differential cross section per atom is [3]:

dσ

dǫ
= πr2

e

mec
2

E0
Z

[

1

ǫ
+ ǫ

] [

1 − ǫ sin2 θ

1 + ǫ2

]

(5.8)
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where re = classical electron radius
mec

2 = electron mass
E0 = energy of the incident photon
E1 = energy of the scattered photon
ǫ = E1/E0 .

Assuming an elastic col-

lision, the scattering angle θ is defined by the Compton formula:

E1 = E0
mec

2

mec2 + E0(1 − cos θ)
. (5.9)

Sampling the Photon Energy

The value of ǫ corresponding to the minimum photon energy (backward scat-
tering) is given by

ǫ0 =
mec

2

mec2 + 2E0
, (5.10)

hence ǫ ∈ [ǫ0, 1]. Using the combined composition and rejection Monte Carlo
methods described in [4, 5, 6] one may set

Φ(ǫ) ≃
[

1

ǫ
+ ǫ

] [

1 − ǫ sin2 θ

1 + ǫ2

]

= f(ǫ)·g(ǫ) = [α1f1(ǫ) + α2f2(ǫ)]·g(ǫ), (5.11)

α1 = ln(1/ǫ0) ; f1(ǫ) = 1/(α1ǫ)
α2 = (1 − ǫ20)/2 ; f2(ǫ) = ǫ/α2.

f1 and f2 are probability density functions defined on the interval [ǫ0, 1], and

g(ǫ) =

[

1 − ǫ

1 + ǫ2
sin2 θ

]

is the rejection function ∀ǫ ∈ [ǫ0, 1] =⇒ 0 < g(ǫ) ≤ 1. Given a set of
3 random numbers r, r′, r′′ uniformly distributed on the interval [0,1], the
sampling procedure for ǫ is the following:

1. decide whether to sample from f1(ǫ) or f2(ǫ):
if r < α1/(α1 + α2) select f1(ǫ), otherwise select f2(ǫ)

2. sample ǫ from the distributions corresponding to f1 or f2:
for f1 : ǫ = ǫr

′
0 (≡ exp(−r′α1))

for f2 : ǫ2 = ǫ20 + (1 − ǫ20)r
′

3. calculate sin2 θ = t(2 − t) where t ≡ (1 − cos θ) = mec
2(1 − ǫ)/(E0ǫ)

4. test the rejection function:
if g(ǫ) ≥ r′′ accept ǫ, otherwise go to step 1.
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Compute the Final State Kinematics

After the successful sampling of ǫ, the polar angles of the scattered photon
with respect to the direction of the parent photon are generated. The az-
imuthal angle, φ, is generated isotropically and θ is as defined in the previous

section. The momentum vector of the scattered photon,
−→
Pγ1, is then trans-

formed into the World coordinate system. The kinetic energy and momentum
of the recoil electron are then

Tel = E0 −E1−→
Pel =

−→
Pγ0 −

−→
Pγ1.

Doppler broading of final electron momentum due to electron motion is
implemented only in G4KleinNishinaModel. For that emphirical electron
density profile function is used.

5.3.3 Atomic shell effects

The differential cross-section described above is valid only for those collisions
in which the energy of the recoil electron is large compared to its binding
energy (which is ignored). In the alternative model (G4KleinNishinaModel)
atomic shell effects are taken into account. For that a sampling of a shell is
performed with the weight proportional to number of shell electrons. Electron
energy distribution function is approximated via simplified form

F (T ) = exp (−T/Eb)/Eb, (5.12)

where Eb is shell bound energy, T - kinetic energy of the electron.
The value T is sampled and scattering is sampled in the rest frame of

the electron according the algorithm described in the previous sub-chapter.
After sampling an inverse Lorentz transformation to the laboratory frame is
performed. Potential energy (Eb + T ) is subtracted from the scattered elec-
tron kinetic energy. If final electron energy become negative then sampling is
repeated. Atomic relaxation are sampled if deexcitation module is enabled.
Enabling of atomic relaxation for Compton scattering is performed in the
same way as for photoelectric effect 5.2.3.

5.3.4 Status of This Document

09.10.98 created by M. Maire
14.01.02 minor revision by M. Maire
22.04.02 reworded by D.H. Wright
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18.03.04 include references for total cross section (M. Maire)
10.12.10 revised by V. Ivanchenko
20.11.12 revised by V. Ivanchenko
29.11.13 revised by V. Ivanchenko
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5.4 Gamma Conversion into e+e− Pair

In the standard sub-package two models are available. The first model is
implemented in the class G4BetheHeitlerModel, it is derived from Geant3
and is applicable below 100GeV . In the second (G4PairProductionRelModel)
Landau-Pomenrachuk-Migdal (LPM) effect is taken into account and this
model can be applied for very high energy gammas.

5.4.1 Cross Section

The total cross-section per atom for the conversion of a gamma into an
(e+, e−) pair has been parameterized as

σ(Z,Eγ) = Z(Z + 1)

[

F1(X) + F2(X) Z +
F3(X)

Z

]

, (5.13)

where Eγ is the incident gamma energy andX = ln(Eγ/mec
2) . The functions

Fn are given by

F1(X) = a0 + a1X + a2X
2 + a3X

3 + a4X
4 + a5X

5 (5.14)

F2(X) = b0 + b1X + b2X
2 + b3X

3 + b4X
4 + b5X

5

F3(X) = c0 + c1X + c2X
2 + c3X

3 + c4X
4 + c5X

5,

with the parameters ai, bi, ci taken from a least-squares fit to the data [1].
Their values can be found in the function which computes formula 5.13.
This parameterization describes the data in the range

1 ≤ Z ≤ 100

and

Eγ ∈ [1.5 MeV, 100 GeV].

The accuracy of the fit was estimated to be ∆ σ
σ

≤ 5% with a mean value of
≈ 2.2%. Above 100 GeV the cross section is constant. Below Elow = 1.5 MeV
the extrapolation

σ(E) = σ(Elow) ·
(

E − 2mec
2

Elow − 2mec2

)2

(5.15)

is used.
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In a given material the mean free path, λ, for a photon to convert into
an (e+, e−) pair is

λ(Eγ) =

(

∑

i

nati · σ(Zi, Eγ)

)−1

(5.16)

where nati is the number of atoms per volume of the ith element of the
material.

Corrected Bethe-Heitler Cross Section

As written in [2], the Bethe-Heitler formula corrected for various effects is

dσ(Z, ǫ)

dǫ
= αr2

eZ[Z + ξ(Z)]

{

[ǫ2 + (1 − ǫ)2]

[

Φ1(δ(ǫ)) −
F (Z)

2

]

+
2

3
ǫ(1 − ǫ)

[

Φ2(δ(ǫ)) −
F (Z)

2

]}

(5.17)

where α is the fine-structure constant and re the classical electron radius.
Here ǫ = E/Eγ, Eγ is the energy of the photon and E is the total energy
carried by one particle of the (e+, e−) pair. The kinematical limits of ǫ are
therefore

mec
2

Eγ
= ǫ0 ≤ ǫ ≤ 1 − ǫ0. (5.18)

Screening Effect The screening variable, δ, is a function of ǫ

δ(ǫ) =
136

Z1/3

ǫ0
ǫ(1 − ǫ)

, (5.19)

and measures the ’impact parameter’ of the projectile. Two screening func-
tions are introduced in the Bethe-Heitler formula :

for δ ≤ 1 Φ1(δ) = 20.867 − 3.242δ + 0.625δ2 (5.20)

Φ2(δ) = 20.209 − 1.930δ − 0.086δ2

for δ > 1 Φ1(δ) = Φ2(δ) = 21.12 − 4.184 ln(δ + 0.952).

Because the formula 5.17 is symmetric under the exchange ǫ ↔ (1 − ǫ), the
range of ǫ can be restricted to

ǫ ∈ [ǫ0, 1/2]. (5.21)
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Born Approximation The Bethe-Heitler formula is calculated with plane
waves, but Coulomb waves should be used instead. To correct for this, a
Coulomb correction function is introduced in the Bethe-Heitler formula :

for Eγ < 50 MeV : F (z) = 8/3 lnZ (5.22)

for Eγ ≥ 50 MeV : F (z) = 8/3 lnZ + 8fc(Z)

with

fc(Z) = (αZ)2

[

1

1 + (αZ)2
(5.23)

+0.20206 − 0.0369(αZ)2 + 0.0083(αZ)4 − 0.0020(αZ)6 + · · ·
]

.

It should be mentioned that, after these additions, the cross section becomes
negative if

δ > δmax(ǫ1) = exp

[

42.24 − F (Z)

8.368

]

− 0.952. (5.24)

This gives an additional constraint on ǫ :

δ ≤ δmax =⇒ ǫ ≥ ǫ1 =
1

2
− 1

2

√

1 − δmin

δmax
(5.25)

where

δmin = δ

(

ǫ =
1

2

)

=
136

Z1/3
4ǫ0 (5.26)

has been introduced. Finally the range of ǫ becomes

ǫ ∈ [ǫmin = max(ǫ0, ǫ1), 1/2]. (5.27)
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Gamma Conversion in the Electron Field The electron cloud gives an
additional contribution to pair creation, proportional to Z (instead of Z2).
This is taken into account through the expression

ξ(Z) =
ln(1440/Z2/3)

ln(183/Z1/3) − fc(Z)
. (5.28)

Factorization of the Cross Section ǫ is sampled using the techniques of
’composition+rejection’, as treated in [3, 4, 5]. First, two auxiliary screening
functions should be introduced:

F1(δ) = 3Φ1(δ) − Φ2(δ) − F (Z)

F2(δ) =
3

2
Φ1(δ) −

1

2
Φ2(δ) − F (Z) (5.29)

It can be seen that F1(δ) and F2(δ) are decreasing functions of δ, ∀δ ∈
[δmin, δmax]. They reach their maximum for δmin = δ(ǫ = 1/2) :

F10 = maxF1(δ) = F1(δmin)

F20 = maxF2(δ) = F2(δmin). (5.30)

After some algebraic manipulations the formula 5.17 can be written :

dσ(Z, ǫ)

dǫ
= αr2

eZ[Z + ξ(Z)]
2

9

[

1

2
− ǫmin

]

× [N1 f1(ǫ) g1(ǫ) +N2 f2(ǫ) g2(ǫ)] , (5.31)
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where

N1 =

[

1

2
− ǫmin

]2

F10 f1(ǫ) = 3

[ 1
2
−ǫmin]

3

[

1
2
− ǫ
]2

g1(ǫ) =
F1(ǫ)

F10

N2 =
3

2
F20 f2(ǫ) = const = 1

[ 1
2
−ǫmin]

g2(ǫ) =
F2(ǫ)

F20
.

f1(ǫ) and f2(ǫ) are probability density functions on the interval ǫ ∈ [ǫmin, 1/2]
such that

∫ 1/2

ǫmin

fi(ǫ) dǫ = 1

, and g1(ǫ) and g2(ǫ) are valid rejection functions: 0 < gi(ǫ) ≤ 1 .

5.4.2 Final State

The differential cross section depends on the atomic number Z of the material
in which the interaction occurs. In a compound material the element i in
which the interaction occurs is chosen randomly according to the probability

Prob(Zi, Eγ) =
natiσ(Zi, Eγ)
∑

i[nati · σi(Eγ)]
. (5.32)

Sampling the Energy Given a triplet of uniformly distributed random
numbers (ra, rb, rc) :

1. use ra to choose which decomposition term in 5.31 to use:

if ra < N1/(N1 +N2) → f1(ǫ) g1(ǫ) otherwise → f2(ǫ) g2(ǫ) (5.33)

2. sample ǫ from f1(ǫ) or f2(ǫ) with rb :

ǫ =
1

2
−
(

1

2
− ǫmin

)

r
1/3
b or ǫ = ǫmin +

(

1

2
− ǫmin

)

rb (5.34)

3. reject ǫ if g1(ǫ)or g2(ǫ) < rc

note : below Eγ = 2 MeV it is enough to sample ǫ uniformly on [ǫ0, 1/2],
without rejection.

Charge The charge of each particle of the pair is fixed randomly.
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Polar Angle of the Electron or Positron

The polar angle of the electron (or positron) is defined with respect to the
direction of the parent photon. The energy-angle distribution given by Tsai
[6] is quite complicated to sample and can be approximated by a density
function suggested by Urban [7] :

∀u ∈ [0, ∞[ f(u) =
9a2

9 + d
[u exp(−au) + d u exp(−3au)] (5.35)

with

a =
5

8
d = 27 and θ± =

mc2

E±
u. (5.36)

A sampling of the distribution 5.35 requires a triplet of random numbers such
that

if r1 <
9

9 + d
→ u =

− ln(r2r3)

a
otherwise u =

− ln(r2r3)

3a
. (5.37)

The azimuthal angle φ is generated isotropically. The e+ and e− momenta are
assumed to be coplanar with the parent photon. This information, together
with energy conservation, is used to calculate the momentum vectors of the
(e+, e−) pair and to rotate them to the global reference system.

5.4.3 Ultra-Relativistic Model

It is implemented in the class G4PairProductionRelModel and is configured
above 80GeV in all reference Physics lists. The cross section is computed
using direct integration of differential cross section [6] and not its parameter-
isation described in 5.4.1. LPM effect is taken into account in the same way
as for bremsstrahlung 8.2.2. Secondary generation algorithm is the same as
in the standard Bethe-Haitler model.

5.4.4 Status of This Document

12.01.02 created by M.Maire.
21.03.02 corrections in angular distribution (mma)
22.04.02 re-worded by D.H. Wright
10.12.10 revision by V. Ivanchenko
20.11.12 revision by V. Ivanchenko
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5.5 Gamma Conversion into µ+µ− Pair

The class G4GammaConversionToMuons simulates the process of gamma
conversion into muon pairs. Given the photon energy and Z and A of the
material in which the photon converts, the probability for the conversions
to take place is calculated according to a parameterized total cross section.
Next, the sharing of the photon energy between the µ+ and µ− is deter-
mined. Finally, the directions of the muons are generated. Details of the
implementation are given below and can be also found in [1].

5.5.1 Cross Section and Energy Sharing

In the field of the nucleus, muon pair production on atomic electrons, γ+e→
e + µ+ + µ−, has a threshold of 2mµ(mµ + me)/me ≈ 43.9 GeV . Up to
several hundred GeV this process has a much lower cross section than the
corresponding process on the nucleus. At higher energies, the cross section on
atomic electrons represents a correction of ∼ 1/Z to the total cross section.

For the approximately elastic scattering considered here, momentum, but
no energy, is transferred to the nucleon. The photon energy is fully shared
by the two muons according to

Eγ = E+
µ + E−

µ (5.38)

or in terms of energy fractions

x+ =
E+

µ

Eγ
, x− =

E−
µ

Eγ
, x+ + x− = 1 .

The differential cross section for electromagnetic pair creation of muons in
terms of the energy fractions of the muons is

dσ

dx+
= 4αZ2 r2

c

(

1 − 4

3
x+x−

)

log(W ) , (5.39)

where Z is the charge of the nucleus, rc is the classical radius of the particles
which are pair produced (here muons) and

W = W∞
1 + (Dn

√
e− 2) δ /mµ

1 +B Z−1/3
√
e δ /me

(5.40)

where

W∞ =
B Z−1/3

Dn

mµ

me
δ =

m2
µ

2Eγ x+x−

√
e = 1.6487 . . . .
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For hydrogen B = 202.4 Dn = 1.49

and for all other nuclei B = 183 Dn = 1.54A0.27. (5.41)

These formulae are obtained from the differential cross section for muon
bremsstrahlung [2] by means of crossing relations. The formulae take into
account the screening of the field of the nucleus by the atomic electrons in
the Thomas-Fermi model, as well as the finite size of the nucleus, which is
essential for the problem under consideration. The above parameterization
gives good results for Eγ ≫ mµ. The fact that it is approximate close
to threshold is of little practical importance. Close to threshold, the cross
section is small and the few low energy muons produced will not travel very
far. The cross section calculated from Eq. (5.39) is positive for Eγ > 4mµ

and

xmin ≤ x ≤ xmax with xmin =
1

2
−
√

1

4
− mµ

Eγ

xmax =
1

2
+

√

1

4
− mµ

Eγ

,

(5.42)
except for very asymmetric pair-production, close to threshold, which can
easily be taken care of by explicitly setting σ = 0 whenever σ < 0.

Note that the differential cross section is symmetric in x+ and x− and
that

x+x− = x− x2

where x stands for either x+ or x−. By defining a constant

σ0 = 4αZ2 r2
c log(W∞) (5.43)

the differential cross section Eq. (5.39) can be rewritten as a normalized and
symmetric as function of x:

1

σ0

dσ

dx
=

[

1 − 4

3
(x− x2)

]

logW

logW∞
. (5.44)

This is shown in Fig. 5.1 for several elements and a wide range of photon
energies. The asymptotic differential cross section for Eγ → ∞

1

σ0

dσ∞
dx

= 1 − 4

3
(x− x2)

is also shown.
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Figure 5.1: Normalized differential cross section for pair production as a
function of x, the energy fraction of the photon energy carried by one of
the leptons in the pair. The function is shown for three different elements,
hydrogen, beryllium and lead, and for a wide range of photon energies.
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5.5.2 Parameterization of the Total Cross Section

The total cross section is obtained by integration of the differential cross
section Eq. (5.39), that is

σtot(Eγ) =

∫ xmax

xmin

dσ

dx+
dx+ = 4αZ2 r2

c

∫ xmax

xmin

(

1 − 4

3
x+x−

)

log(W ) dx+ .

(5.45)
W is a function of (x+, Eγ) and (Z,A) of the element (see Eq. (5.40)). Nu-
merical values of W are given in Table 5.2.

Table 5.2: Numerical values of W for x+ = 0.5 for different elements.

Eγ W for H W for Be W for Cu W for Pb
GeV

1 2.11 1.594 1.3505 5.212
10 19.4 10.85 6.803 43.53
100 191.5 102.3 60.10 332.7
1000 1803 919.3 493.3 1476.1
10000 11427 4671 1824 1028.1
∞ 28087 8549 2607 1339.8

Values of the total cross section obtained by numerical integration are
listed in Table 5.3 for four different elements. Units are in µbarn , where
1µbarn = 10−34 m2 .

Table 5.3: Numerical values for the total cross section
Eγ σtot, H σtot, Be σtot, Cu σtot, Pb

GeV µbarn µbarn µbarn µbarn
1 0.01559 0.1515 5.047 30.22
10 0.09720 1.209 49.56 334.6
100 0.1921 2.660 121.7 886.4
1000 0.2873 4.155 197.6 1476
10000 0.3715 5.392 253.7 1880
∞ 0.4319 6.108 279.0 2042

Well above threshold, the total cross section rises about linearly in log(Eγ)
with the slope

WM =
1

4Dn

√
emµ

(5.46)
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Figure 5.2: Total cross section for the Bethe-Heitler process γ → µ+µ− as a
function of the photon energy Eγ in hydrogen and lead, normalized to the
asymptotic cross section σ∞.

until it saturates due to screening at σ∞. Fig. 5.2 shows the normalized cross
section where

σ∞ =
7

9
σ0 and σ0 = 4αZ2 r2

c log(W∞) . (5.47)

Numerical values of WM are listed in Table 5.4.

Table 5.4: Numerical values of WM .

Element WM

1/GeV
H 0.963169
Be 0.514712
Cu 0.303763
Pb 0.220771

The total cross section can be parameterized as

σpar =
28αZ2 r2

c

9
log(1 +WMCfEg) , (5.48)

with

Eg =

(

1 − 4mµ

Eγ

)t
(

W s
sat + Es

γ

)1/s
. (5.49)

and

Wsat =
W∞
WM

= B Z−1/3
4
√
em2

µ

me
.
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The threshold behavior in the cross section was found to be well approxi-
mated by t = 1.479 + 0.00799Dn and the saturation by s = −0.88. The
agreement at lower energies is improved using an empirical correction factor,
applied to the slope WM , of the form

Cf =

[

1 + 0.04 log

(

1 +
Ec

Eγ

)]

,

where

Ec =

[

−18. +
4347.

B Z−1/3

]

GeV .

A comparison of the parameterized cross section with the numerical integra-
tion of the exact cross section shows that the accuracy of the parametrization
is better than 2%, as seen in Fig. 5.3.
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Figure 5.3: Ratio of numerically integrated and parametrized total cross
sections as a function of Eγ for hydrogen, beryllium, copper and lead.

5.5.3 Multi-differential Cross Section and Angular Vari-
ables

The angular distributions are based on the multi-differential cross section for
lepton pair production in the field of the Coulomb center

dσ

dx+ du+ du− dϕ
=

4Z2α3

π

m2
µ

q4
u+ u−

{

u2
+ + u2

−
(1 + u2

+) (1 + u2
−)

− 2x+x−

[

u2
+

(1 + u2
+)2

+
u2
−

(1 + u2
−)2

]

− 2u+u−(1 − 2x+x−) cosϕ

(1 + u2
+) (1 + u2

−)

}

. (5.50)

Here

u± = γ±θ± , γ± =
E±

µ

mµ
, q2 = q2

‖ + q2
⊥ , (5.51)
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where

q2
‖ = q2

min (1 + x−u
2
+ + x+u

2
−)2 ,

q2
⊥ = m2

µ

[

(u+ − u−)2 + 2 u+u−(1 − cosϕ)
]

. (5.52)

q2 is the square of the momentum q transferred to the target and q2
‖ and q2

⊥
are the squares of the components of the vector q, which are parallel and
perpendicular to the initial photon momentum, respectively. The minimum
momentum transfer is qmin = m2

µ/(2Eγ x+x−).

The muon vectors have the components

p+ = p+ ( sin θ+ cos(ϕ0 + ϕ/2) , sin θ+ sin(ϕ0 + ϕ/2) , cos θ+) ,
p− = p− (− sin θ− cos(ϕ0 − ϕ/2) , − sin θ− sin(ϕ0 − ϕ/2) , cos θ−) ,

(5.53)

where p± =
√

E2
± −m2

µ. The initial photon direction is taken as the z-axis.

The cross section of Eq. (5.50) does not depend on ϕ0. Because of azimuthal
symmetry, ϕ0 can simply be sampled at random in the interval (0, 2 π).

Eq. (5.50) is too complicated for efficient Monte Carlo generation. To
simplify, the cross section is rewritten to be symmetric in u+, u− using a
new variable u and small parameters ξ, β, where u± = u± ξ/2 and β = uϕ.
When higher powers in small parameters are dropped, the differential cross
section in terms of u, ξ, β becomes

dσ

dx+ dξ dβ udu
=

4Z2α3

π

m2
µ

(

q2
‖ +m2

µ(ξ2 + β2)
)2 (5.54)

{

ξ2

[

1

(1 + u2)2
− 2 x+x−

(1 − u2)2

(1 + u2)4

]

+
β2(1 − 2x+x−)

(1 + u2)2

}

,

where, in this approximation,

q2
‖ = q2

min (1 + u2)2 .

For Monte Carlo generation, it is convenient to replace (ξ, β) by the polar
coordinates (ρ, ψ) with ξ = ρ cosψ and β = ρ sinψ. Integrating Eq. 5.54
over ψ and using symbolically du2 where du2 = 2u du yields

dσ

dx+ dρ du2
=

4Z2α3

m2
µ

ρ3

(q2
‖/m

2
µ + ρ2)2

{

1 − x+x−
(1 + u2)2

− x+x−(1 − u2)2

(1 + u2)4

}

.

(5.55)
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Integration with logarithmic accuracy over ρ gives

∫

ρ3 dρ

(q2
‖/m

2
µ + ρ2)2

≈
1
∫

q‖/mµ

dρ

ρ
= log

(

mµ

q‖

)

. (5.56)

Within the logarithmic accuracy, log(mµ/q‖) can be replaced by log(mµ/qmin),
so that

dσ

dx+ du2
=

4Z2α3

m2
µ

{

1 − x+x−
(1 + u2)2

− x+x−(1 − u2)2

(1 + u2)4

}

log

(

mµ

qmin

)

. (5.57)

Making the substitution u2 = 1/t− 1, du2 = −dt /t2 gives

dσ

dx+ dt
=

4Z2α3

m2
µ

[1 − 2 x+x− + 4 x+x−t (1 − t)] log

(

mµ

qmin

)

. (5.58)

Atomic screening and the finite nuclear radius may be taken into account by
multiplying the differential cross section determined by Eq. (5.55) with the
factor

(Fa(q) − Fn(q) )2 , (5.59)

where Fa and Fn are atomic and nuclear form factors. Please note that after
integrating Eq. 5.55 over ρ, the q-dependence is lost.

5.5.4 Procedure for the Generation of µ+µ− Pairs

Given the photon energy Eγ and Z and A of the material in which the γ
converts, the probability for the conversions to take place is calculated ac-
cording to the parametrized total cross section Eq. (5.48). The next step,
determining how the photon energy is shared between the µ+ and µ−, is
done by generating x+ according to Eq. (5.39). The directions of the muons
are then generated via the auxilliary variables t, ρ, ψ. In more detail, the
final state is generated by the following five steps, in which R1,2,3,4,... are ran-
dom numbers with a flat distribution in the interval [0,1]. The generation
proceeds as follows.

1) Sampling of the positive muon energy E+
µ = x+Eγ .

This is done using the rejection technique. x+ is first sampled from a flat
distribution within kinematic limits using

x+ = xmin +R1(xmax − xmin)
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and then brought to the shape of Eq. (5.39) by keeping all x+ which satisfy

(

1 − 4

3
x+x−

)

log(W )

log(Wmax)
< R2 .

Here Wmax = W (x+ = 1/2) is the maximum value of W , obtained for sym-
metric pair production at x+ = 1/2. About 60% of the events are kept in this
step. Results of a Monte Carlo generation of x+ are illustrated in Fig. 5.4.
The shape of the histograms agrees with the differential cross section illus-
trated in Fig. 5.1.
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Figure 5.4: Histogram of generated x+ distributions for beryllium at three
different photon energies. The total number of entries at each energy is 106.

2) Generate t(= 1
γ2θ2+1

) .

The distribution in t is obtained from Eq.(5.58) as

f1(t) dt =
1 − 2 x+x− + 4 x+x−t (1 − t)

1 + C1/t2
dt , 0 < t ≤ 1 . (5.60)

with form factors taken into account by

C1 =
(0.35A0.27)2

x+x−Eγ/mµ
. (5.61)

In the interval considered, the function f1(t) will always be bounded from
above by

max[f1(t)] =
1 − x+x−
1 + C1

.

For small x+ and large Eγ, f1(t) approaches unity, as shown in Fig. 5.5.
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Figure 5.5: The function f1(t) at Eγ = 10 GeV (left) and Eγ = 1 TeV (right)
in beryllium for different values of x+.
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Figure 5.6: Histograms of generated t distributions for Eγ = 10 GeV (solid
line) and Eγ = 100 GeV (dashed line) with 106 events each.
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Figure 5.7: Histograms of generated ψ distributions for beryllium at four
different photon energies.

44



The Monte Carlo generation is done using the rejection technique. About
70% of the generated numbers are kept in this step. Generated t-distributions
are shown in Fig. 5.6.

3) Generate ψ by the rejection technique using t generated in the previous
step for the frequency distribution

f2(ψ) =
[

1−2 x+x−+4 x+x−t (1−t) (1+cos(2ψ))
]

, 0 ≤ ψ ≤ 2π . (5.62)

The maximum of f2(ψ) is

max[f2(ψ)] = 1 − 2 x+x− [1 − 4 t (1 − t)] . (5.63)

Generated distributions in ψ are shown in Fig. 5.7.

4) Generate ρ.
The distribution in ρ has the form

f3(ρ) dρ =
ρ3 dρ

ρ4 + C2
, 0 ≤ ρ ≤ ρmax , (5.64)

where

ρ2
max =

1.9

A0.27

(

1

t
− 1

)

, (5.65)

and

C2 =
4√
x+x−

[

(

mµ

2Eγx+x− t

)2

+

(

me

183Z−1/3mµ

)2
]2

. (5.66)

The ρ distribution is obtained by a direct transformation applied to uniform
random numbers Ri according to

ρ = [C2(exp(β Ri) − 1)]1/4 , (5.67)

where

β = log

(

C2 + ρ4
max

C2

)

. (5.68)

Generated distributions of ρ are shown in Fig. 5.8
5) Calculate θ+, θ− and ϕ from t, ρ, ψ with

γ± =
E±

µ

mµ
and u =

√

1

t
− 1 . (5.69)
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according to

θ+ =
1

γ+

(

u+
ρ

2
cosψ

)

, θ− =
1

γ−

(

u− ρ

2
cosψ

)

and ϕ =
ρ

u
sinψ .

(5.70)
The muon vectors can now be constructed from Eq. (5.53), where ϕ0 is chosen
randomly between 0 and 2π. Fig. 5.9 shows distributions of θ+ at different
photon energies (in beryllium). The spectra peak around 1/γ as expected.

The most probable values are θ+ ∼ mµ/E
+
µ = 1/γ+. In the small angle

approximation used here, the values of θ+ and θ− can in principle be any
positive value from 0 to ∞. In the simulation, this may lead (with a very
small probability, of the order of mµ/Eγ) to unphysical events in which θ+ or
θ− is greater than π. To avoid this, a limiting angle θcut = π is introduced,
and the angular sampling repeated, whenever max(θ+, θ−) > θcut .
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Figure 5.10: Angular distribution of positive (or negative) muons. The solid
curve represents the results of the exact calculations. The histogram is the
simulated distribution. The angular distribution for pairs created in the field
of the Coulomb centre (point-like target) is shown by the dashed curve for
comparison.

Figs. 5.10,5.11 and 5.12 show distributions of the simulated angular char-
acteristics of muon pairs in comparison with results of exact calculations.
The latter were obtained by means of numerical integration of the squared
matrix elements with respective nuclear and atomic form factors. All these
calculations were made for iron, with Eγ = 10 GeV and x+ = 0.3. As seen
from Fig. 5.10, wide angle pairs (at low values of the argument in the fig-
ure) are suppressed in comparison with the Coulomb center approximation.
This is due to the influence of the finite nuclear size which is comparable
to the inverse mass of the muon. Typical angles of particle emission are of
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the order of 1/γ± = mµ/E
±
µ (Fig. 5.11). Fig. 5.12 illustrates the influence of

the momentum transferred to the target on the angular characteristics of the
produced pair. In the frame of the often used model which neglects target
recoil, the pair particles would be symmetric in transverse momenta, and
coplanar with the initial photon.

5.5.5 Status of this document

28.05.02 created by H. Burkhardt.
01.12.02 re-worded by D.H. Wright
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Chapter 6

Elastic scattering
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6.1 Multiple Scattering

Elastic scattering of electrons and other charged particles is an important
component of any transport code. Elastic cross section is huge when particle
energy decreases, so multiple scattering (MSC) approach should be intro-
duced in order to have acceptable CPU performance of the simulation. A
universal interface G4VMultipleScattering is used by all Geant4 MSC pro-
cesses [1]:

• G4eMultipleScattering;

• G4hMultipleScattering;

• G4MuMultipleScattering.

For concrete simulation the G4VMscModel interface is used, which is an
extension of the base G4VEmModel interface. The following models are
available:

• G4UrbanMscModel - since Geant4 10.0 only one Urban model is avail-
able and it is applicable to all types of particles;

• G4GoudsmitSaundersonModel - for electrons and positrons [2];

• G4WentzelVIModel - for muons and hadrons, for muons should be in-
cluded in Physics List together with G4CoulombScattering process, for
hadrons large angle scattering is simulated by hadron elastic process.

The discussion on Geant4 MSC models is available in Ref.[3]. Below we will
describe models developed by L. Urban [4], because these models are used
in many Geant4 applications and have general components reused by other
models.

6.1.1 Introduction

MSC simulation algorithms can be classified as either detailed or condensed.
In the detailed algorithms, all the collisions/interactions experienced by the
particle are simulated. This simulation can be considered as exact, it gives
the same results as the solution of the transport equation. However, it can
be used only if the number of collisions is not too large, a condition fulfilled
only for special geometries (such as thin foils, or low density gas). In solid
or liquid media the average number of collisions is very large and the de-
tailed simulation becomes very inefficient. High energy simulation codes use
condensed simulation algorithms, in which the global effects of the collisions
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are simulated at the end of a track segment. The global effects generally
computed in these codes are the net energy loss, displacement, and change
of direction of the charged particle. The last two quantities are computed
from MSC theories used in the codes and the accuracy of the condensed
simulations is limited by accuracy of MSC approximation.

Most particle physics simulation codes use the multiple scattering theo-
ries of Molière [5], Goudsmit and Saunderson [6] and Lewis [7]. The theories
of Molière and Goudsmit-Saunderson give only the angular distribution after
a step, while the Lewis theory computes the moments of the spatial distribu-
tion as well. None of these MSC theories gives the probability distribution
of the spatial displacement. Each of the MSC simulation codes incorporates
its own algorithm to determine the angular deflection, true path length cor-
rection, and spatial displacement of the charged particle after a given step.
These algorithms are not exact, of course, and are responsible for most of
the uncertainties of the transport codes. Also due to inaccuracy of MSC the
simulation results can depend on the value of the step length and generally
user has to select the value of the step length carefully.

A new class of MSC simulation, the mixed simulation algorithms (see
e.g.[8]), appeared in the literature recently. The mixed algorithm simulates
the hard collisions one by one and uses a MSC theory to treat the effects of
the soft collisions at the end of a given step. Such algorithms can prevent
the number of steps from becoming too large and also reduce the dependence
on the step length. Geant4 original implementation of a similar approach is
realized in G4WentzelVIModel [3].

The Urban MSC models used in Geant4 belongs to the class of condensed
simulations. Urban uses model functions to determine the angular and spatial
distributions after a step. The functions have been chosen in such a way as
to give the same moments of the (angular and spatial) distributions as are
given by the Lewis theory [7].

6.1.2 Definition of Terms

In simulation, a particle is transported by steps through the detector ge-
ometry. The shortest distance between the endpoints of a step is called
the geometrical path length, z. In the absence of a magnetic field, this is a
straight line. For non-zero fields, z is the length along a curved trajectory.
Constraints on z are imposed when particle tracks cross volume boundaries.
The path length of an actual particle, however, is usually longer than the ge-
ometrical path length, due to multiple scattering. This distance is called the
true path length, t. Constraints on t are imposed by the physical processes
acting on the particle.
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The properties of the MSC process are determined by the transport mean
free paths, λk, which are functions of the energy in a given material. The
k-th transport mean free path is defined as

1

λk
= 2πna

∫ 1

−1

[1 − Pk(cosχ)]
dσ(χ)

dΩ
d(cosχ) (6.1)

where dσ(χ)/dΩ is the differential cross section of the scattering, Pk(cosχ)
is the k-th Legendre polynomial, and na is the number of atoms per volume.

Most of the mean properties of MSC computed in the simulation codes
depend only on the first and second transport mean free paths. The mean
value of the geometrical path length (first moment) corresponding to a given
true path length t is given by

〈z〉 = λ1

[

1 − exp

(

− t

λ1

)]

(6.2)

Eq. 6.2 is an exact result for the mean value of z if the differential cross
section has axial symmetry and the energy loss can be neglected. The trans-
formation between true and geometrical path lengths is called the path length
correction. This formula and other expressions for the first moments of the
spatial distribution were taken from either [8] or [9], but were originally cal-
culated by Goudsmit and Saunderson [6] and Lewis [7].

At the end of the true step length, t, the scattering angle is θ. The mean
value of cosθ is

〈cosθ〉 = exp

[

− t

λ1

]

(6.3)

The variance of cosθ can be written as

σ2 = 〈cos2θ〉 − 〈cosθ〉2 =
1 + 2e−2κτ

3
− e−2τ (6.4)

where τ = t/λ1 and κ = λ1/λ2. The mean lateral displacement is given
by a more complicated formula [8], but this quantity can also be calculated
relatively easily and accurately. The square of the mean lateral displacement
is

〈x2 + y2〉 =
4λ2

1

3

[

τ − κ+ 1

κ
+

κ

κ− 1
e−τ − 1

κ(κ− 1)
e−κτ

]

(6.5)

Here it is assumed that the initial particle direction is parallel to the the z
axis. The lateral correlation is determined by the equation

〈xvx + yvy〉 =
2λ1

3

[

1 − κ

κ− 1
e−τ +

1

κ− 1
e−κτ

]

(6.6)
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where vx and vy are the x and y components of the direction unit vector. This
equation gives the correlation strength between the final lateral position and
final direction.

The transport mean free path values have been calculated in Refs.[10],[11]
for electrons and positrons in the kinetic energy range 100 eV - 20 MeV in
15 materials. The Urban MSC model in Geant4 uses these values for kinetic
energies below 10 MeV. For high energy particles (above 10 MeV) the trans-
port mean free path values have been taken from a paper of R. Mayol and
F. Salvat [12]. When necessary, the model linearly interpolates or extrap-
olates the transport cross section, σ1 = 1/λ1, in atomic number Z and in
the square of the particle velocity, β2. The ratio κ is a very slowly varying
function of the energy: κ > 2 for T > a few keV, and κ → 3 for very high
energies (see [9]). Hence, a constant value of 2.5 is used in the model.

Nuclear size effects are negligible for low energy particles and they are
accounted for in the Born approximation in [12], so there is no need for extra
corrections of this kind in the Urban model.

6.1.3 Path Length Correction

As mentioned above, the path length correction refers to the transformation
t −→ g and its inverse. The t −→ g transformation is given by Eq. 6.2 if the
step is small and the energy loss can be neglected. If the step is not small
the energy dependence makes the transformation more complicated. For this
case Eqs. 6.3,6.2 should be modified as

〈cosθ〉 = exp

[

−
∫ t

0

du

λ1(u)

]

(6.7)

〈z〉 =

∫ t

0

〈cosθ〉u du (6.8)

where θ is the scattering angle, t and z are the true and geometrical path
lengths, and λ1 is the transport mean free path.

In order to compute Eqs. 6.7,6.8 the t dependence of the transport mean
free path must be known. λ1 depends on the kinetic energy of the particle
which decreases along the step. All computations in the model use a linear
approximation for this t dependence:

λ1(t) = λ10(1 − αt) (6.9)

Here λ10 denotes the value of λ1 at the start of the step, and α is a constant.
It is worth noting that Eq. 6.9 is not a crude approximation. It is rather
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good at low (< 1 MeV) energy. At higher energies the step is generally much
smaller than the range of the particle, so the change in energy is small and
so is the change in λ1. Using Eqs. 6.7 - 6.9 the explicit formula for 〈cosθ〉
and 〈z〉 are:

〈cosθ〉 = (1 − αt)
1

αλ10 (6.10)

〈z〉 =
1

α(1 + 1
αλ10

)

[

1 − (1 − αt)
1+ 1

αλ10

]

(6.11)

The value of the constant α can be expressed using λ10 and λ11 where λ11 is
the value of the transport mean free path at the end of the step

α =
λ10 − λ11

tλ10
(6.12)

At low energies ( Tkin < M , M - particle mass) α has a simpler form:

α =
1

r0
(6.13)

where r0 denotes the range of the particle at the start of the step. It can
easily be seen that for a small step (i.e. for a step with small relative energy
loss) the formula of 〈z〉 is

〈z〉 = λ10

[

1 − exp

(

− t

λ10

)]

(6.14)

Eq. 6.11 or 6.14 gives the mean value of the geometrical step length for a
given true step length. The actual geometrical path length is sampled in
the model according to the simple probability density function defined for
v = z/t ∈ [0, 1] :

f(v) = (k + 1)(k + 2)vk(1 − v) (6.15)

The value of the exponent k is computed from the requirement that f(v)
must give the same mean value for z = vt as Eq. 6.11 or 6.14. Hence

k =
3〈z〉 − t

t− 〈z〉 (6.16)

The value of z = vt is sampled using f(v) if k > 0, otherwise z = 〈z〉 is
used. The g −→ t transformation is performed using the mean values. The
transformation can be written as

t(z) = 〈t〉 = −λ1 log

(

1 − z

λ1

)

(6.17)
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if the geometrical step is small and

t(z) =
1

α

[

1 − (1 − αwz)
1
w

]

(6.18)

where

w = 1 +
1

αλ10

if the step is not small, i.e. the energy loss should be taken into account.

6.1.4 Angular Distribution

The quantity u = cosθ is sampled according to a model function g(u). The
shape of this function has been chosen such that Eqs. 6.3 and 6.4 are satisfied.
The functional form of g is

g(u) = q[pg1(u) + (1 − p)g2(u)] + (1 − q)g3(u) (6.19)

where 0 ≤ p, q ≤ 1, and the gi are simple functions of u = cosθ, normalized
over the range u ∈ [−1, 1]. The functions gi have been chosen as

g1(u) = C1 e−a(1−u) − 1 ≤ u0 ≤ u ≤ 1 (6.20)

g2(u) = C2
1

(b− u)d
− 1 ≤ u ≤ u0 ≤ 1 (6.21)

g3(u) = C3 − 1 ≤ u ≤ 1 (6.22)

where a > 0, b > 0, d > 0 and u0 are model parameters, and the Ci are
normalization constants. It is worth noting that for small scattering angles,
θ, g1(u) is nearly Gaussian (exp(−θ2/2θ2

0)) if θ2
0 ≈ 1/a, while g2(u) has a

Rutherford-like tail for large θ, if b ≈ 1 and d is not far from 2 .

6.1.5 Determination of the Model Parameters

The parameters a, b, d, u0 and p, q are not independent. The requirement
that the angular distribution function g(u) and its first derivative be contin-
uous at u = u0 imposes two constraints on the parameters:

p g1(u0) = (1 − p) g2(u0) (6.23)

p a g1(u0) = (1 − p)
d

b− u0
g2(u0) (6.24)
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A third constraint comes from Eq. 6.7 : g(u) must give the same mean value
for u as the theory. It follows from Eqs. 6.10 and 6.19 that

q{p〈u〉1 + (1 − p)〈u〉2} = [1 − α t]
1

αλ10 (6.25)

where 〈u〉i denotes the mean value of u computed from the distribution gi(u).
The parameter a was chosen according to a modified Highland-Lynch-Dahl
formula for the width of the angular distribution [13], [14].

a =
0.5

1 − cos(θ0)
(6.26)

where θ0 is

θ0 =
13.6MeV

βcp
zch

√

t

X0

[

1 + hc ln

(

t

X0

) ]

(6.27)

when the original Highland-Lynch-Dahl formula is used. Here θ0 = θrms
plane

is the width of the approximate Gaussian projected angle distribution, p,
βc and zch are the momentum, velocity and charge number of the incident
particle, and t/X0 is the true path length in radiation length unit. The
correction term hc = 0.038 in the formula. This value of θ0 is from a fit to
the Molière distribution for singly charged particles with β = 1 for all Z,
and is accurate to 11 % or better for 10−3 ≤ t/X0 ≤ 100 (see e.g. Rev. of
Particle Properties, section 23.3).

The model uses a slightly modified Highland-Lynch-Dahl formula to com-
pute θ0. For electrons/positrons the modified θ0 formula is

θ0 =
13.6MeV

βcp
zch

√
yc (6.28)

where

y = ln

(

t

X0

)

(6.29)

The correction term c and coeffitients ci are

c = c0(̇c1 + c2y), (6.30)

c0 = 0.990395 − 0.168386Z1/6 + 0.093286Z1/3, (6.31)

c1 = 1 − 0.08778

Z
, (6.32)

c2 = 0.04078 + 0.00017315Z. (6.33)
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This formula gives a much smaller step dependence in the angular dis-
tribution than the Highland form. The value of the parameter u0 has been
chosen as

u0 = 1 − ξ

a
(6.34)

where
ξ = d1 + d2v + d3v

2 + d4v
3 (6.35)

with

v = ln

(

t

λ1

)

(6.36)

The parameters di-s have the form

di = di0 + di1Z
1
3 + di2Z

2
3 (6.37)

The numerical values of the dij constants can be found in the code.
The tail parameter d is the same as the parameter ξ .
This (empirical) expression is obtained comparing the simulation results

to the data of the MuScat experiment [16]. The remaining three parame-
ters can be computed from Eqs. 6.23 - 6.25. The numerical value of the
parameters can be found in the code.

In the case of heavy charged particles (µ, π, p, etc.) the mean transport
free path is calculated from the electron or positron λ1 values with a ’scaling’
applied. This is possible because the transport mean free path λ1 depends
only on the variable Pβc, where P is the momentum, and βc is the velocity
of the particle.

In its present form the model samples the path length correction and an-
gular distribution from model functions, while for the lateral displacement
and the lateral correlation only the mean values are used and all the other
correlations are neglected. However, the model is general enough to incorpo-
rate other random quantities and correlations in the future.

6.1.6 Step Limitation Algorithm

In Geant4 the boundary crossing is treated by the transportation process.
The transportation ensures that the particle does not penetrate in a new
volume without stopping at the boundary, it restricts the step size when the
particle leaves a volume. However, this step restriction can be rather weak
in big volumes and this fact can result a not very good angular distribution
after the volume. At the same time, there is no similar step limitation when
a particle enters a volume and this fact does not allow a good backscattering
simulation for low energy particles. Low energy particles penetrate too deeply
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into the volume in the first step and then - because of energy loss - they are
not able to reach again the boundary in backward direction.

MSC step limitation algorithm has been developed [4] in order to achieve
optimal balance between simulation precision and CPU performance of sim-
ulation for different applications. At the start of a track or after entering in
a new volume, the algorithm restricts the step size to a value

fr ·max{r, λ1} (6.38)

where r is the range of the particle, fr is a parameter ∈ [0, 1], taking the max
of r and λ1 is an empirical choice.The value of fr is constant for low energy
particles while for particles with λ1 > λlim an effective value is used given by
the scaling equation

freff = fr ·
[

1 − sc+ sc ∗ λ1

λlim

]

(6.39)

( The numerical values sc = 0.25 and λlim = 1 mm are used in the equation.)
In order not to use very small - unphysical - step sizes a lower limit is given
for the step size as

tlimitmin = max

[

λ1

nstepmax
, λelastic

]

(6.40)

with nstepmax = 25 and λelastic is the elastic mean free path of the particle
(see later).

It can be easily seen that this kind of step limitation poses a real constraint
only for low energy particles. In order to prevent a particle from crossing a
volume in just one step, an additional limitation is imposed: after entering
a volume the step size cannot be bigger than

dgeom

fg

(6.41)

where dgeom is the distance to the next boundary (in the direction of the
particle) and fg is a constant parameter. A similar restriction at the start of
a track is

2dgeom

fg
(6.42)

At this point the program also checks whether the particle has entered a
new volume. If it has, the particle steps cannot be bigger than tlim =
fr max(r, λ). This step limitation is governed by the physics, because tlim
depends on the particle energy and the material.
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The choice of the parameters fr and fg is also related to performance.
By default fr = 0.02 and fg = 2.5 are used, but these may be set to any
other value in a simple way. One can get an approximate simulation of
the backscattering with the default value, while if a better backscattering
simulation is needed it is possible to get it using a smaller value for fr.
However, this model is very simple and it can only approximately reproduce
the backscattering data.

6.1.7 Boundary Crossing Algorithm

A special stepping algorithm has been implemented in order to improve the
simulation around interfaces. This algorithm does not allow ’big’ last steps
in a volume and ’big’ first steps in the next volume. The step length of these
steps around a boundary crossing can not be bigger than the mean free path
of the elastic scattering of the particle in the given volume (material). After
these small steps the particle scattered according to a single scattering law
(i.e. there is no multiple scattering very close to the boundary or at the
boundary).

The key parameter of the algorithm is the variable called skin. The
algorithm is not active for skin ≤ 0, while for skin > 0 it is active in
layers of thickness skin · λelastic before boundary crossing and of thickness
(skin−1)·λelastic after boundary crossing (for skin = 1 there is only one small
step just before the boundary). In this active area the particle performs steps
of length λelastic (or smaller if the particle reaches the boundary traversing a
smaller distance than this value).

The scattering at the end of a small step is single or plural and for these
small steps there are no path length correction and lateral displacement com-
putation. In other words the program works in this thin layer in ’microscopic
mode’. The elastic mean free path can be estimated as

λelastic = λ1 · rat (Tkin) (6.43)

where rat(Tkin) a simple empirical function computed from the elastic and
first transport cross section values of Mayol and Salvat [12]

rat (Tkin) =
0.001(MeV )2

Tkin (Tkin + 10MeV )
(6.44)

Tkin is the kinetic energy of the particle.
At the end of a small step the number of scatterings is sampled according

to the Poisson’s distribution with a mean value t/λelastic and in the case of
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plural scattering the final scattering angle is computed by summing the con-
tributions of the individual scatterings. The single scattering is determined
by the distribution

g(u) = C
1

(2a + 1 − u)2
(6.45)

where u = cos(θ) , a is the screening parameter, C is a normalization con-
stant. The form of the screening parameter is the same as in the single
scattering (see there).

6.1.8 Implementation Details

The step length of a particles is determined by the physics processes or the
geometry of the detectors. The tracking/stepping algorithm checks all the
step lengths demanded by the (continuous or discrete) physics processes and
determines the minimum of these step lengths (see 3.2). The MSC model
should be called to compute step limit after all processes except the trans-
portation process. The following sequence of computations are performed to
make the step:

• the minimum of all processes true step length limit t including one of
the MSC process is selected;

• The conversion t −→ g (geometrical step limit) is performed;

• the minimum of obtained value g and the transportation step limit is
selected;

• The final conversion g −→ t is performed.

The reason for this ordering is that the physics processes ’feel’ the true path
length t traveled by the particle, while the transportation process (geometry)
uses the z step length.

After the actual step of the particle is done, the MSC model is responsible
for sampling of scattering angle and relocation of the end-point of the step.
The scattering angle θ of the particle after the step of length ’t’ is sampled
according to the model function given in Eq. 6.19 . The azimuthal angle φ
is generated uniformly in the range [0, 2π].

After the simulation of the scattering angle, the lateral displacement is
computed using Eq. 6.5. Then the correlation given by Eq. 6.6 is used to
determine the direction of the lateral displacement. Before ’moving’ the
particle according to the displacement a check is performed to ensure that
the relocation of the particle with the lateral displacement does not take the
particle beyond the volume boundary.
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Default MSC parameter values optimized per particle type are shown in
Table 6.1. Note, that there is three types of step limitation by multiple
scattering process:

• Minimal - only fr parameter is used, was used for g4 7.1 release;

• UseSafety or skin = 0 - uses particle range and geometrical safety;

• UseDistanceToBoundary - uses particle range, geometrical safety and
linear distance to geometrical boundary.

particle e+, e− muons, hadrons ions
StepLimitType fUseSafety fMinimal fMinimal

skin 0 0 0
fr 0.04 0.2 0.2
fg 2.5 0.1 0.1

LateralDisplacement true true false

Table 6.1: The default values of parameters for different particle type.

The parameters of the model can be changed via public functions of the base
class G4VMultipleSacttering. They can be changed for all multiple scatter-
ing processes simultaneously via G4EmProcessOptions class or via Geant4
UI commands. The following commands are available:

/process/msc/StepLimit UseDistanceToBoundary
/process/msc/LateralDisplacement false
/process/msc/RangeFactor 0.02
/process/msc/GeomFactor 2.5
/process/msc/Skin 2

6.1.9 Status of this document

09.10.98 created by L. Urbán.
15.11.01 major revision by L. Urbán.
18.04.02 updated by L. Urbán.
25.04.02 re-worded by D.H. Wright
07.06.02 major revision by L. Urbán.
18.11.02 updated by L. Urbán, now it describes the new angle distribution.
05.12.02 grammar check and parts re-written by D.H. Wright
13.11.03 revision by L. Urbán.
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01.12.03 revision by V. Ivanchenko.
17.05.04 revision by L. Urbán.
01.12.04 updated by L. Urbán.
18.03.05 sampling z + mistyping corrections (M. Maire)
22.06.05 grammar, spelling check by D.H. Wright
12.12.05 revised by L. Urbán, according to Geant4 8.0
14.12.05 updated implementation Details (M. Maire)
08.06.06 revised by L. Urbán, according to Geant4 8.1
25.11.06 revised by L. Urbán, according to Geant4 8.2
29.03.07 revised by L. Urbán, for Geant4 8.3
13.06.07 modified introduction (M. Maire)
17.06.07 explain effective FR (L. Urbán)
25.06.07 update description of options by V. Ivanchenko
05.12.07 revised by L. Urbán, for Geant4 9.1
08.12.08 revised by L. Urbán, for Geant4 9.2
11.12.08 minor revision by V. Ivanchenko
11.12.09 minor revision by V. Ivanchenko, for Geant4 9.3
09.12.09 revision by V. Ivanchenko, for Geant4 9.4
25.11.11 minor revision by V. Ivanchenko, for Geant4 9.5
03.12.13 minor revision by L. Urban, for Geant4 10.0
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6.2 Discrete Processes for Charged Particles

Some processes for charged particles following the same interfaceG4V EmProcess
as gamma processes described in section 5.1:

• G4CoulombScattering;

• G4eplusAnnihilation (with additional AtRest methods);

• G4eplusPolarizedAnnihilation (with additional AtRest methods);

• G4eeToHadrons;

• G4NuclearStopping;

• G4MicroElecElastic;

• G4MicroElecInelastic.

Corresponding model classes follow the G4V EmModel interface:

• G4DummyModel (zero cross section, no secondaries);

• G4eCoulombScatteringModel;

• G4eSingleCoulombScatteringModel;

• G4IonCoulombScatteringModel;

• G4eeToHadronsModel;

• G4PenelopeAnnihilationModel;

• G4PolarizedAnnihilationModel;

• G4ICRU49NuclearStoppingModel;

• G4MicroElecElasticModel;

• G4MicroElecInelasticModel.

Some processes from do not follow described EM interfaces but provide direct
implementations of the basic G4V DiscreteProcess process:

• G4AnnihiToMuPair;

• G4ScreenedNuclearRecoil;

• G4Cerenkov;

• G4Scintillation;

• G4SynchrotronRadiation;
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6.2.1 Status of This Document

10.12.10 created by V. Ivanchenko
29.11.13 updated by V. Ivanchenko
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6.3 Single Scattering

Single elastic scattering process is an alternative to the multiple scattering
process. The advantage of the single scattering process is in possibility of
usage of theory based cross sections, in contrary to the Geant4 multiple scat-
tering model [1], which uses a number of phenomenological approximations
on top of Lewis theory. The process G4CoulombScattering was created for
simulation of single scattering of muons, it also applicable with some physical
limitations to electrons, muons and ions. Because each of elastic collisions are
simulated the number of steps of charged particles significantly increasing in
comparison with the multiple scattering approach, correspondingly its CPU
performance is pure. However, in low-density media (vacuum, low-density
gas) multiple scattering may provide wrong results and single scattering pro-
cesses is more adequate.

6.3.1 Coulomb Scattering

The single scattering model of Wentzel [2] is used in many of multiple scat-
tering models including Penelope code [4]. The Wentzel for describing elastic
scattering of particles with charge ze (z = −1 for electron) by atomic nucleus
with atomic number Z based on simplified scattering potential

V (r) =
zZe2

r
exp(−r/R), (6.46)

where the exponential factor tries to reproduce the effect of screening. The
parameter R is a screening radius [3]

R = 0.885Z−1/3rB, (6.47)

where rB is the Bohr radius. In the first Born approximation the elastic
scattering cross section σ(W ) can be obtained as

dσ(W )(θ)

dΩ
=

(ze2)2

(pβc)2

Z(Z + 1)

(2A+ 1 − cosθ)2
, (6.48)

where p is the momentum and β is the velocity of the projectile particle. The
screening parameter A according to Moliere and Bethe [3]

A =

(

ℏ

2pR

)2

(1.13 + 3.76(αZ/β)2), (6.49)

where α is a fine structure constant and the factor in brackets is used to take
into account second order corrections to the first Born approximation.
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The total elastic cross section σ can be expressed via Wentzel cross section
(6.48)

dσ(θ)

dΩ
=
dσ(W )(θ)

dΩ

(

Z

(1 + (qRN )2

12
)2

+ 1

)

1

Z + 1
, (6.50)

where q is momentum transfer to the nucleus, RN is nuclear radius. This
term takes into account nuclear size effect [5], the second term takes into
account scattering off electrons. The results of simulation with the single
scattering model (Fig.6.1) are competitive with the results of the multiple
scattering.

Figure 6.1: Scattering of muons off 1.5 mm aluminum foil: data [6] - black
squares; simulation - colored markers corresponding different options of mul-
tiple scattering and single scattering model; in the bottom plot - relative
difference between the simulation and the data in percents; hashed area
demonstrates one standard deviation of the data.

6.3.2 Implementation Details

The total cross section of the process is obtained as a result of integration
of the differential cross section (6.50). The first term of this cross section
is integrated in the interval (0, π). The second term in the smaller interval
(0, θm), where θm is the maximum scattering angle off electrons, which is
determined using the cut value for the delta electron production. Before
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sampling of angular distribution the random choice is performed between
scattering off the nucleus and off electrons.

6.3.3 Status of This Document

06.12.07 created by V. Ivanchenko
08.12.10 added chapter on discrete processes by V.Ivanchenko
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6.4 Ion Scattering

The necessity of accurately computing the characteristics of interatomic scat-
tering arises in many disciplines in which energetic ions pass through mate-
rials. Traditionally, solutions to this problem not involving hadronic inter-
actions have been dominated by the multiple scattering, which is reasonably
successful, but not very flexible. In particular, it is relatively difficult to in-
troduce into such a system a particular screening function which has been
measured for a specific atomic pair, rather than the universal functions which
are applied. In many problems of current interest, such as the behavior of
semiconductor device physics in a space environment, nuclear reactions, par-
ticle showers, and other effects are critically important in modeling the full
details of ion transport. The process G4ScreenedNuclearRecoil provides sim-
ulation of ion elastic scattering [1]. This process is available with extended
electromagnetic example TestEm7.

6.4.1 Method

The method used in this computation is a variant of a subset of the method
described in Ref.[2]. A very short recap of the basic material is included here.
The scattering of two atoms from each other is assumed to be a completely
classical process, subject to an interatomic potential described by a potential
function

V (r) =
Z1Z2e

2

r
φ
(r

a

)

(6.51)

where Z1 and Z2 are the nuclear proton numbers, e2 is the electromagnetic
coupling constant (q2

e/4πǫ0 in SI units), r is the inter-nuclear separation, φ
is the screening function describing the effect of electronic screening of the
bare nuclear charges, and a is a characteristic length scale for this screening.
In most cases, φ is a universal function used for all ion pairs, and the value of
a is an appropriately adjusted length to give reasonably accurate scattering
behavior. In the method described here, there is no particular need for
a universal function φ, since the method is capable of directly solving the
problem for most physically plausible screening functions. It is still useful
to define a typical screening length a in the calculation described below, to
keep the equations in a form directly comparable with our previous work even
though, in the end, the actual value is irrelevant as long as the final function
φ(r) is correct. From this potential V (r) one can then compute the classical
scattering angle from the reduced center-of-mass energy ε ≡ Eca/Z1Z2e

2

(where Ec is the kinetic energy in the center-of-mass frame) and reduced
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impact parameter β ≡ b/a

θc = π − 2β

∫ ∞

x0

f(z) dz/z2 (6.52)

where

f(z) =

(

1 − φ(z)

z ε
− β2

z2

)−1/2

(6.53)

and x0 is the reduced classical turning radius for the given ε and β.
The problem, then, is reduced to the efficient computation of this scat-

tering integral. In our previous work, a great deal of analytical effort was
included to proceed from the scattering integral to a full differential cross
section calculation, but for application in a Monte-Carlo code, the scattering
integral θc(Z1, Z2, Ec, b) and an estimated total cross section σ0(Z1, Z2, Ec)
are all that is needed. Thus, we can skip algorithmically forward in the orig-
inal paper to equations 15-18 and the surrounding discussion to compute the
reduced distance of closest approach x0. This computation follows that in
the previous work exactly, and will not be reintroduced here.

For the sake of ultimate accuracy in this algorithm, and due to the rela-
tively low computational cost of so doing, we compute the actual scattering
integral (as described in equations 19-21 of [2]) using a Lobatto quadrature
of order 6, instead of the 4th order method previously described. This re-
sults in the integration accuracy exceeding that of any available interatomic
potentials in the range of energies above those at which molecular structure
effects dominate, and should allow for future improvements in that area. The
integral α then becomes (following the notation of the previous paper)

α ≈ 1 + λ0

30
+

4
∑

i=1

w′
i f

(

x0

qi

)

(6.54)

where

λ0 =

(

1

2
+

β2

2 x2
0

− φ′(x0)

2 ε

)−1/2

(6.55)

w′
i ∈[0.03472124, 0.1476903, 0.23485003, 0.1860249]

qi ∈[0.9830235, 0.8465224, 0.5323531, 0.18347974]
Then

θc = π − πβα

x0

(6.56)

The other quantity required to implement a scattering process is the total
scattering cross section σ0 for a given incident ion and a material through
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which the ion is propagating. This value requires special consideration for a
process such as screened scattering. In the limiting case that the screening
function is unity, which corresponds to Rutherford scattering, the total cross
section is infinite. For various screening functions, the total cross section
may or may not be finite. However, one must ask what the intent of defining
a total cross section is, and determine from that how to define it.

In Geant4, the total cross section is used to determine a mean-free-path
lµ which is used in turn to generate random transport distances between
discrete scattering events for a particle. In reality, where an ion is propagating
through, for example, a solid material, scattering is not a discrete process
but is continuous. However, it is a useful, and highly accurate, simplification
to reduce such scattering to a series of discrete events, by defining some
minimum energy transfer of interest, and setting the mean free path to be
the path over which statistically one such minimal transfer has occurred. This
approach is identical to the approach developed for the original TRIM code
[3]. As long as the minimal interesting energy transfer is set small enough
that the cumulative effect of all transfers smaller than that is negligible,
the approximation is valid. As long as the impact parameter selection is
adjusted to be consistent with the selected value of lµ, the physical result
isn’t particularly sensitive to the value chosen.

Noting, then, that the actual physical result isn’t very sensitive to the
selection of lµ, one can be relatively free about defining the cross section σ0

from which lµ is computed. The choice used for this implementation is fairly
simple. Define a physical cutoff energy Emin which is the smallest energy
transfer to be included in the calculation. Then, for a given incident particle
with atomic number Z1, mass m1, and lab energy Einc, and a target atom
with atomic number Z2 and mass m2, compute the scattering angle θc which
will transfer this much energy to the target from the solution of

Emin = Einc
4m1m2

(m1 +m2)2
sin2 θc

2
(6.57)

. Then, noting that α from eq. 6.54 is a number very close to unity, one
can solve for an approximate impact parameter b with a single root-finding
operation to find the classical turning point. Then, define the total cross
section to be σ0 = πb2, the area of the disk inside of which the passage of an
ion will cause at least the minimum interesting energy transfer. Because this
process is relatively expensive, and the result is needed extremely frequently,
the values of σ0(Einc) are precomputed for each pairing of incident ion and
target atom, and the results cached in a cubic-spline interpolation table.
However, since the actual result isn’t very critical, the cached results can be
stored in a very coarsely sampled table without degrading the calculation at
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all, as long as the values of the lµ used in the impact parameter selection are
rigorously consistent with this table.

The final necessary piece of the scattering integral calculation is the sta-
tistical selection of the impact parameter b to be used in each scattering
event. This selection is done following the original algorithm from TRIM,
where the cumulative probability distribution for impact parameters is

P (b) = 1 − exp

(−π b2
σ0

)

(6.58)

where N σ0 ≡ 1/lµ where N is the total number density of scattering centers
in the target material and lµ is the mean free path computed in the conven-
tional way. To produce this distribution from a uniform random variate r on
(0,1], the necessary function is

b =

√

− log r

π N lµ
(6.59)

This choice of sampling function does have the one peculiarity that it can
produce values of the impact parameter which are larger than the impact
parameter which results in the cutoff energy transfer, as discussed above
in the section on the total cross section, with probability 1/e. When this
occurs, the scattering event is not processed further, since the energy transfer
is below threshold. For this reason, impact parameter selection is carried out
very early in the algorithm, so the effort spent on uninteresting events is
minimized.

The above choice of impact sampling is modified when the mean-free-path

is very short. If σ0 > π
(

l
2

)2
where l is the approximate lattice constant of

the material, as defined by l = N−1/3, the sampling is replaced by uniform
sampling on a disk of radius l/2, so that

b =
l

2

√
r (6.60)

This takes into account that impact parameters larger than half the lattice
spacing do not occur, since then one is closer to the adjacent atom. This also
derives from TRIM.

One extra feature is included in our model, to accelerate the produc-
tion of relatively rare events such as high-angle scattering. This feature is a
cross-section scaling algorithm, which allows the user access to an unphys-
ical control of the algorithm which arbitrarily scales the cross-sections for
a selected fraction of interactions. This is implemented as a two-parameter
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adjustment to the central algorithm. The first parameter is a selection fre-
quency fh which sets what fraction of the interactions will be modified. The
second parameter is the scaling factor for the cross-section. This is imple-
mented by, for a fraction fh of interactions, scaling the impact parameter by
b′ = b/

√
scale. This feature, if used with care so that it does not provide

excess multiple-scattering, can provide between 10 and 100-fold improve-
ments to event rates. If used without checking the validity by comparing to
un-adjusted scattering computations, it can also provide utter nonsense.

6.4.2 Implementation Details

The coefficients for the summation to approximate the integral for α in
eq.(6.54) are derived from the values in Abramowitz & Stegun [4], altered to
make the change-of-variable used for this integral. There are two basic steps
to the transformation. First, since the provided abscissas xi and weights wi

are for integration on [-1,1], with only one half of the values provided, and
in this work the integration is being carried out on [0,1], the abscissas are
transformed as:

yi ∈
{

1 ∓ xi

2

}

(6.61)

Then, the primary change-of-variable is applied resulting in:

qi = cos
π yi

2
(6.62)

w′
i =

wi

2
sin

π yi

2
(6.63)

except for the first coefficient w′
1where the sin() part of the weight is taken

into the limit of λ0 as described in eq.(6.55). This value is just w′
1 = w1/2.

6.4.3 Status of this document

06.12.07 created by V. Ivanchenko from paper of M.H. Mendenhall and
R.A. Weller
06.12.07 further edited by M. Mendenhall to bring contents of paper up-to-
date with current implementation.
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6.5 Single Scattering, Screened Coulomb Po-

tential and NIEL

Alternative model of Coulomb scattering of ions have been developed based
on [1] and references therein. The advantage of this model is the wide appli-
cability range in energy from 50 keV to 100 TeV per nucleon.

6.5.1 Nucleus–Nucleus Interactions

As discussed in Ref. [1], at small distances from the nucleus, the potential
energy is a Coulomb potential, while - at distances larger than the Bohr
radius - the nuclear field is screened by the fields of atomic electrons. The
interaction between two nuclei is usually described in terms of an interatomic
Coulomb potential (e.g., see Section 2.1.4.1 of Ref. [2] and Section 4.1 of
Ref. [3]), which is a function of the radial distance r between the two nuclei

V (r) =
zZe2

r
ΨI(rr), (6.64)

where ez (projectile) and eZ (target) are the charges of the bare nuclei and
ΨI is the interatomic screening function and rr is given by

rr =
r

aI
, (6.65)

with aI the so-called screening length (also termed screening radius). In the
framework of the Thomas–Fermi model of the atom (e.g., see Ref. [1] and
references therein) - thus, following the approach of ICRU Report 49 (1993)
-, a commonly used screening length for z = 1 incoming particles is that from
Thomas–Fermi

aTF =
CTF a0

Z1/3
, (6.66)

and - for incoming particles with z ≥ 2 - that introduced by Ziegler, Biersack
and Littmark (1985) (and termed universal screening length):

aU =
CTF a0

z0.23 + Z0.23
, (6.67)

where

a0 =
~

2

me2

is the Bohr radius, m is the electron rest mass and

CTF =
1

2

(

3 π

4

)2/3

≃ 0.88534
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is a constant introduced in the Thomas–Fermi model.
The simple scattering model due to Wentzel [5] - with a single exponen-

tial screening-function ΨI(rr) {e.g., see Ref. [1] and references therein} - was
repeatedly employed in treating single and multiple Coulomb-scattering with
screened potentials. The resulting elastic differential cross section differs from
the Rutherford differential cross section by an additional term - the so-called
screening parameter - which prevents the divergence of the cross section when
the angle θ of scattered particles approaches 0◦. The screening parameter As

[e.g., see Equation (21) of Bethe (1953)] - as derived by Molière (1947, 1948)
for the single Coulomb scattering using a Thomas–Fermi potential - is ex-
pressed as

As =

(

~

2 p aI

)2
[

1.13 + 3.76 ×
(

αzZ

β

)2
]

(6.68)

where aI is the screening length - from Eqs. (6.66, 6.67) for particles with
z = 1 and z ≥ 2, respectively; α is the fine-structure constant; p (βc) is
the momentum (velocity) of the incoming particle undergoing the scattering
onto a target supposed to be initially at rest; c and ~ are the speed of light
and the reduced Planck constant, respectively. When the (relativistic) mass
- with corresponding rest mass m - of the incoming particle is much lower
than the rest mass (M) of the target nucleus, the differential cross section -
obtained from the Wentzel–Molière treatment of the single scattering - is:

dσWM(θ)

dΩ
=

(

zZe2

2 p βc

)2
1

[

As + sin2(θ/2)
]2 . (6.69)

Equation (6.69) differs from Rutherford’s formula - as already mentioned -
for the additional term As to sin2(θ/2). As discussed in Ref. [1], for β ≃ 1
(i.e., at very large p) and with As ≪ 1, one finds that the cross section
approaches a constant:

σWM
c ≃

(

2 zZe2aI

~c

)2
π

1.13 + 3.76 × (αzZ)2 . (6.70)

As discussed in Ref. [1] and references therein, for a scattering under the
action of a central potential (for instance that due to a screened Coulomb
field), when the rest mass of the target particle is no longer much larger than
the relativistic mass of the incoming particle, the expression of the differential
cross section must properly be re-written - in the center of mass system - in
terms of an “effective particle” with momentum equal to that of the incoming
particle (p′in) and rest mass equal to the relativistic reduced mass

µrel =
mM

M1,2
, (6.71)
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whereM1,2 is the invariant mass; m andM are the rest masses of the incoming
and target particles, respectively. The “effective particle” velocity is given by:

βrc = c

√

√

√

√

[

1 +

(

µrelc

p′in

)2
]−1

.

Thus, one finds (e.g, see Ref. [1]):

dσWM(θ′)

dΩ′ =

(

zZe2

2 p′in βrc

)2
1

[

As + sin2(θ′/2)
]2 , (6.72)

with

As =

(

~

2 p′in aI

)2
[

1.13 + 3.76 ×
(

αzZ

βr

)2
]

(6.73)

and θ′ the scattering angle in the center of mass system.
The energy T transferred to the recoil target is related to the scattering

angle as T = Tmax sin2 (θ′/2) - where Tmax is the maximum energy which
can be transferred in the scattering (e.g., see Section 1.5 of Ref. [2]) -, thus,
assuming an isotropic azimuthal distribution one can re-write Eq. (6.72) in
terms of the kinetic recoil energy T of the target

dσWM(T )

dT
= π

(

zZe2

p′in βrc

)2
Tmax

[Tmax As + T ]2
. (6.74)

Furthermore, one can demonstrates that Eq. (6.74) can be re-written as
(e.g, see Ref. [1]);

dσWM(T )

dT
= 2 π

(

zZe2
)2 E2

p2Mc4
1

[Tmax As + T ]2
(6.75)

with p and E the momentum and total energy of the incoming particle in the
laboratory. Equation (6.75) expresses - as already mentioned - the differential
cross section as a function of the (kinetic) energy T achieved by the recoil
target.

6.5.2 Nuclear Stopping Power

Using Eq. (6.75) the nuclear stopping power - in MeVcm−1 - is obtained as

−
(

dE

dx

)

nucl

= 2nAπ
(

zZe2
)2 E2

p2Mc4

[

As

As + 1
− 1 + ln

(

As + 1

As

)]

(6.76)
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Figure 6.2: Nuclear stopping power from Ref. [1] - in MeVcm2 g−1 - calcu-
lated using Eq. (6.76) in silicon is shown as a function of the kinetic energy per
nucleon - from 50 keV/nucleon up 100TeV/nucleon - for protons, α-particle
and 11B-, 12C-, 28Si-, 56Fe-, 115In-, 208Pb-nuclei.

with nA the number of nuclei (atoms) per unit of volume and, finally, the
negative sign indicates that the energy is lost by the incoming particle (thus,
achieved by recoil targets). As discussed in Ref. [1], a slight increase of the
nuclear stopping power with energy is expected because of the decrease of
the screening parameter with energy.

For instance, in Fig. 6.2 the nuclear stopping power in silicon - in MeVcm2 g−1

- is shown as a function of the kinetic energy per nucleon - from 50 keV/nucleon
up 100TeV/nucleon - for protons, α-particles and 11B-, 12C-, 28Si-, 56Fe-,
115In-, 208Pb-nuclei.

A comparison of the present treatment with that obtained from Ziegler,
Biersack and Littmark (1985) - available in SRIM (2008) [8] - using the so-
called universal screening potential (see also Ref. [9]) is discussed in Ref. [1]:
a good agreement is achieved down to about 150 keV/nucleon. At large en-
ergies, the non-relativistic approach due to Ziegler, Biersack and Littmark
(1985) becomes less appropriate and deviations from stopping powers cal-
culated by means of the universal screening potential are expected and ob-
served.

The non-relativistic approach - based on the universal screening potential
- of Ziegler, Biersack and Littmark (1985) was also used by ICRU (1993) to
calculate nuclear stopping powers due to protons and α-particles in materi-
als. ICRU (1993) used as screening lengths those from Eqs. (6.66, 6.67) for
protons and α-particles, respectively. As discussed in Ref. [1], the stopping
powers for protons (α-particles) from Eq. (6.76) are less than ≈ 5% larger
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Figure 6.3: Non-ionizing stopping power from Ref. [1] - in MeVcm2 g−1 -
calculated using Eq. (6.79) in silicon is shown as a function of the kinetic
energy per nucleon - from 50 keV/nucleon up 100TeV/nucleon - for protons,
α-particles and 11B-, 12C-, 28Si-, 56Fe-, 115In-, 208Pb-nuclei. The threshold
energy for displacement is 21 eV in silicon.

than those reported by ICRU (1993) from 50 keV/nucleon up to ≈ 8MeV
(19MeV/nucleon). At larger energies the stopping powers from Eq. (6.76)
differ from those from ICRU - as expected - due to the complete relativistic
treatment of the present approach (see Ref. [1]).

The simple screening parameter used so far [Eq. (6.73)] - derived by
Molière (1947) - can be modified by means of a practical correction, i.e.,

A′
s =

(

~

2 p′in aI

)2
[

1.13 + 3.76 × C

(

αzZ

βr

)2
]

, (6.77)

to achieve a better agreement with low energy calculations of Ziegler, Biersack
and Littmark (1985). For instance - as discussed in Ref. [1] -, for α-particles
and heavier ions, with

C = (10πzZα)0.12 (6.78)

the stopping powers obtained from Eq. (6.76) - in which A′
s replaces As - differ

from the values of SRIM (2008) by less than ≈ 4.7 (3.6)% for α-particles (lead
ions) in silicon down to about 50 keV/nucleon. With respect to the tabulated
values of ICRU (1993), the agreement for α-particles is usually better than
4% at low energy down to 50 keV/nucleon - a 5% agreement is achieved at
about 50 keV/nucleon in case of a lead medium. At very high energy, the
stopping power is slightly affected when A′

s replaces As (a further disvussion
is found in Ref. [1]).
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6.5.3 Non-Ionizing Energy Loss due to Coulomb Scat-

tering

A relevant process - which causes permanent damage to the silicon bulk struc-
ture - is the so-called displacement damage (e.g., see Chapter 4 of Ref. [2],
Ref. [10] and references therein). Displacement damage may be inflicted when
a primary knocked-on atom (PKA) is generated. The interstitial atom and
relative vacancy are termed Frenkel-pair (FP). In turn, the displaced atom
may have sufficient energy to migrate inside the lattice and - by further col-
lisions - can displace other atoms as in a collision cascade. This displacement
process modifies the bulk characteristics of the device and causes its degra-
dation. The total number of FPs can be estimated calculating the energy
density deposited from displacement processes. In turn, this energy density
is related to the Non-Ionizing Energy Loss (NIEL), i.e., the energy per unit
path lost by the incident particle due to displacement processes.

In case of Coulomb scattering on nuclei, the non-ionizing energy-loss can
be calculated using the Wentzel–Molière differential cross section [Eq. (6.75)]
discussed in Sect. 6.5.1, i.e.,

−
(

dE

dx

)NIEL

nucl

= nA

∫ Tmax

Td

T L(T )
dσWM(T )

dT
dT , (6.79)

where E is the kinetic energy of the incoming particle, T is the kinetic energy
transferred to the target atom, L(T ) is the fraction of T deposited by means
of displacement processes. The expression of L(T ) - the so-called Lindhard
partition function - can be found, for instance, in Equations (4.94, 4.96) of
Section 4.2.1.1 in Ref. [2] (see also references therein). Tde = T L(T ) is the
so-called damage energy, i.e., the energy deposited by a recoil nucleus with
kinetic energy T via displacement damages inside the medium. The integral in
Eq. (6.79) is computed from the minimum energy Td - the so-called threshold
energy for displacement, i.e., that energy necessary to displace the atom from
its lattice position - up to the maximum energy Tmax that can be transferred
during a single collision process. Td is about 21 eV in silicon. For instance, in
Fig. 6.3 the non-ionizing energy loss - in MeVcm2 g−1 - in silicon is shown
as a function of the kinetic energy per nucleon - from 50 keV/nucleon up
100TeV/nucleon - for protons, α-particles and 11B-, 12C-, 28Si-, 56Fe-, 115In-,
208Pb-nuclei.

A further discussion on the agreement with the results obtained by Jun
and collaborators (2003) - using a relativistic treatment of Coulomb scat-
tering of protons with kinetic energies above 50MeV and up to 1GeV upon
silicon - can be found in Ref. [1].
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6.5.4 G4IonCoulombScatteringModel

As discussed sofar, high energetic particles may inflict permanent damage to
the electronic devices employed in a radiation environment. In particular the
nuclear energy loss is important for the formation of defects in semiconductor
devices. Nuclear energy loss is also responsible for the displacement damage
which is the typical cause of degradation for silicon devices. The electromag-
netic model G4IonCoulombScatteringModel was created in order to simulate
the single scattering of protons, alpha particles and all heavier nuclei inci-
dent on all target materials in the energy range from 50–100 keV/nucleon to
10 TeV.

6.5.5 The Method

The differential cross section previously described is calculated by means
of the class G4IonCoulombCrossSection where a modified version of the
Wentzel’s cross section is used. To solve the scattering problem of heavy
ions it is necessary to introduce an effective particle whose mass is equal to
the relativistic reduced mass of the system defined as

µr ≡
m1m2c

2

Ecm

. (6.80)

where m1 and m2 are incident and target rest masses respectively and Ecm

(in Eq. (6.71) M1,2 = Ecm/c
2) is the total center of mass energy of the

two particles system. The effective particle interacts with a fixed scattering
center with interacting potential expressed by Eq. (6.64) . The momentum
of the effective particle is equal to the momentum of the incoming particle
calculated in the center of mass system (pr ≡ p1cm). Since the target particle
is inside the material it can be considered at rest in the laboratory as a
consequence the magnitude of pr is calculated as

pr ≡ p1cm = p1lab
m2c

2

Ecm
, (6.81)

with Ecm given by

Ecm =
√

(m1c2)2 + (m2c2)2 + 2E1labm2c2, (6.82)

where p1lab and E1lab are the momentum and the total energy of the incom-
ing particle in the laboratory system respectively. The velocity (βr) of the
effective particle is obtained by the relation

1

β2
r

= 1 +

(

µrc
2

prc

)2

. (6.83)
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The modified Wentzel’s cross section is then equal to:

dσ(θr)

dΩ
=

(

Z1Z2e
2

prc βr

)2
1

(2As + 1 − cos θr)2
(6.84)

(in Eq. (6.72) p′in ≡ pr) where Z1 and Z2 are the nuclear proton numbers
of projectile and of target respectively; As is the screening coefficient [see
Eq. (6.73)] and θr is the scattering angle of the effective particle which is
equal the one in the center of mass system (θr ≡ θ1cm). Knowing the scat-
tering angle the recoil kinetic energy of the target particle after scattering is
calculated by

T = m2c
2

(

p1labc

Ecm

)2

(1 − cos θr). (6.85)

The momentum and the total energy of the incident particle after scattering
in the laboratory system are obtained by the usual Lorentz’s transformations.

6.5.6 Implementation Details

In the G4IonCoulombScatteringModel the scattering off electrons is not con-
sidered: only scattering off nuclei is simulated. Secondary particles are gen-
erated when T [Eq. (6.85)] is greater then a given threshold for displacement
Td; it is not cut in range. The user can set this energy threshold Td by the
method SetRecoilThreshold(G4double Td). The default screening coefficient
As is given by Eq. (6.73). If the user wants to use the one given by Eq. (6.77)
the condition SetHeavyIonCorr(1) must be set. When Z1 = 1 the Thomas-
Fermi screening length [aTF see Eq. (6.66)] is used in the calculation of As.
For Z1 ≥ 2 the screening length is the universal one [aU see Eq. (6.67)].
In the G4IonCoulombCrossSection the total differential cross section is ob-
tained by the method NuclearCrossSection() where the Eq. (6.84) is inte-
grated in the interval (0, π):

σ = π

(

Z1Z2e
2

prc βr

)2
1

As(As + 1)
(6.86)

The cosine of the scattering angle is chosen randomly in the interval (-1, 1)
according to the distribution of the total cross section and it is given by the
method SampleCosineTheta() which returns (1 − cos θr).

6.5.7 Status of This Document

02.12.10 created by C. Consolandi and P.G. Rancoita
10.12.10 minor edition by V. Ivanchenko
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6.6 Electron Screened Single Scattering and

NIEL

The present treatment[1] of electron–nucleus interaction is based on numer-
ical and analytical approximations of the Mott differential cross section. It
accounts for effects due to screened Coulomb potentials, finite sizes and finite
rest masses of nuclei for electron with kinetic energies above 200 keV and up
to ultra high. This treatment allows one to determine both the total and
differential cross sections, thus, to calculate the resulting nuclear and non-
ionizing stopping powers (NIEL). Above a few hundreds of MeV, neglecting
the effects of finite sizes and rest masses of recoil nuclei the stopping power
and NIEL result to be largely underestimated, while, above a few tens of
MeV prevents a further large increase, thus, resulting in approaching almost
constant values at high energies.

The non-ionizing energy-loss (NIEL) is the energy lost from a particle
traversing a unit length of a medium through physical process resulting in
permanent displacement damages (e.g. see Ref.[2]). The nuclear stopping
power and NIEL deposition - due to elastic Coulomb scatterings - from pro-
tons, light- and heavy-ions traversing an absorber were previously dealt[3]
and is available in Geant4 (6.5) (see also Sections 1.6, 1.6.1, 2.1.4–2.1.4.2,
4.2.1.6 of Ref.[4]). In the present model included in GEANT4, the nuclear
stopping power and NIEL deposition due to elastic Coulomb scatterings of
electrons are treated up to ultra relativistic energies.

6.6.1 Scattering Cross Section of Electrons on Nuclei

The scattering of electrons by unscreened atomic nuclei was treated by Mott
extending a method - dealing with incident and scattered waves on point-like
nuclei - of Wentzel and including effects related to the spin of electrons. The
differential cross section (DCS) - the so-called Mott differential cross section
(MDCS) - was expressed by Mott as two conditionally convergent infinite
series in terms of Legendre expansions. In Mott–Wentzel treatment, the
scattering occurs on a field of force generating a radially dependent Coulomb
- unscreened (screened) in Mott (Wentzel) - potential. Furthermore, the
MDCS was derived in the laboratory reference system for infinitely heavy
nuclei initially at rest with negligible spin effects and must be numerically
evaluated for any specific nuclear target. Effects related to the recoil and
finite rest mass of the target nucleus (M) were neglected. Thus, in this
framework the total energy of electrons has to be smaller or much smaller
than Mc2.
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The MDCS is usually expressed as:

dσMott(θ)

dΩ
=
dσRut

dΩ
RMott, (6.87)

where RMott is the ratio between the MDCS and Rutherford’s formula [RDCS,
see Equation (1) of Ref.[1]]. For electrons with kinetic energies from several
keV up to 900MeV and target nuclei with 1 6 Z 6 90, Lijian, Quing and
Zhengming[5] provided a practical interpolated expression [Eq. (6.99)] for
RMott with an average error less than 1%; in the present treatment, that ex-
pression - discussed in Sect. 6.6.1 - is the one assumed for RMott in Eq. (6.87)
hereafter. The analytical expression derived by McKinley and Feshbach[6]
for the ratio with respect to Rutherford’s formula [Equation (7) of Ref.[6]] is
given by:

RMcF = 1 − β2 sin2(θ/2) + Z αβπ sin(θ/2) [1 − sin(θ/2)] (6.88)

with the corresponding differential cross section (McFDCS)

dσMcF

dΩ
=
dσRut

dΩ
RMcF. (6.89)

Furthermore, for Mc2 much larger than the total energy of incoming electron
energies the distinction between laboratory (i.e., the system in which the tar-
get particle is initially at rest) and center-of-mass (CoM) systems disappears
(e.g., see discussion in Section 1.6.1 of Ref.[4]). Furthermore, in the CoM of
the reaction the energy transferred from an electron to a nucleus initially at
rest in the laboratory system (i.e., its recoil kinetic energy T ) is related with
the maximum energy transferable Tmax as

T = Tmax sin2(θ′/2) (6.90)

[e.g., see Equations (1.27, 1.95) at page 11 and 31, respectively, of Ref.[4]],
where θ′ is the scattering angle in the CoM system. In addition, one obtains

dT =
Tmax

4π
dΩ′. (6.91)

Since for Mc2 much larger than the electron energy θ is ≈ θ′, one finds that
Eq. (6.90) can be approximated as

T ≃ Tmax sin2(θ/2) , (6.92)

=⇒ sin2(θ/2) =
T

Tmax
(6.93)
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and

dT ≃ Tmax

4π
dΩ. (6.94)

Using Eqs. (6.88, 6.93, 6.94), Rutherford’s formula and Eq. (6.89) can be
respectively rewritten as:

=⇒ dσRut

dT
=

(

Ze2

pβc

)2
πTmax

T 2
, (6.95)

=⇒ dσMcF

T
=

(

Ze2

pβc

)2
πTmax

T 2

[

1−β T

Tmax

(β+Zαπ)+Zαβπ

√

T

Tmax

]

(6.96)

=

(

Ze2

pβc

)2
πTmax

T 2
RMcF(T )

with

RMcF(T ) =

[

1−β T

Tmax
(β+Zαπ)+Zαβπ

√

T

Tmax

]

. (6.97)

Finally, in a similar way the MDCS [Eq. (6.87)] is

dσMott(T )

dT
=

dσRut

dT
RMott(T )

=

(

Ze2

pβc

)2
πTmax

T 2
RMott(T ) (6.98)

with RMott(T ) from Eq. (6.101).

Interpolated Expression for RMott

Recently, Lijian, Quing and Zhengming[5] provided a practical interpolated
expression [Eq. (6.99)] which is a function of both θ and β for electron energies
from several keV up to 900MeV, i.e.,

RMott =
4
∑

j=0

aj(Z, β)(1 − cos θ)j/2, (6.99)

where

aj(Z, β) =
6
∑

k=1

bk,j(Z)(β − β)k−1, (6.100)

and β c = 0.7181287 c is the mean velocity of electrons within the above
mentioned energy range. The coefficients bk,j(Z) are listed in Table 1 of
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Figure 6.4: RMott obtained from Eq. (6.99) at 100MeV for Li, Si, Fe and Pb
nuclei as a function of scattering angle.

Ref.[5] for 1 6 Z 6 90. RMott obtained from Eq. (6.99) at 100MeV is shown
in Fig. 6.4 for Li, Si, Fe and Pb nuclei as a function of scattering angle.
Furthermore, it has to be remarked that the energy dependence of RMott

from Eq. (6.99) was studied and observed to be negligible above ≈ 10 MeV
[for instance, see Eq. (6.100)].

Finally, from Eqs.(6.90, 6.99) [e.g., see also Equation (1.93) at page 31
of Ref.[4]], one finds that RMott can be expressed in terms of the transferred
energy T as

RMott(T ) =

4
∑

j=0

aj(Z, β)

(

2T

Tmax

)j/2

. (6.101)

Screened Coulomb Potentials

The simple scattering model due to Wentzel - with a single exponential
screening function [e.g., see Equation (2.71) at page 95 of Ref.[4]] - was re-
peatedly employed in treating single and multiple Coulomb scattering with
screened potentials. Neglecting effects like those related to spin and finite
size of nuclei, for proton and nucleus interactions on nuclei it was shown
that the resulting elastic differential cross section of a projectile with bare
nuclear-charge ez on a target with bare nuclear-charge eZ differs from the
Rutherford differential cross section (RDCS) by an additional term - the
so-called screening parameter - which prevents the divergence of the cross
section when the angle θ of scattered particles approaches 0◦ [e.g., see Sec-
tion 1.6.1 of Ref.[4]]. For z = 1 particles the screening parameter As,M is
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expressed as

As,M =

(

~

2 p aTF

)2
[

1.13 + 3.76 ×
(

αZ

β

)2
]

(6.102)

where α, c and ~ are the fine-structure constant, speed of light and reduced
Planck constant, respectively; p (βc) is the momentum (velocity) of the in-
coming particle undergoing the scattering onto a target supposed to be ini-
tially at rest - i.e., in the laboratory system -; aTF is the screening length
suggested by Thomas–Fermi

aTF =
CTF a0

Z1/3
(6.103)

with

a0 =
~

2

me2

the Bohr radius, m the electron rest mass and

CTF =
1

2

(

3 π

4

)2/3

≃ 0.88534

a constant introduced in the Thomas–Fermi model [e.g., see Ref.[3] , Equa-
tions (2.73, 2,82) - at page 95 and 99, respectively - of Ref.[4], see also
references therein]. The modified Rutherford’s formula [dσWM(θ)/dΩ], i.e.,
the differential cross section - obtained from the Wentzel–Molière treatment
of the single scattering on screened nuclear potential - is given by [e.g., see
Equation (2.84) of Ref.[4] and Ref.[3], see also references therein]:

dσWM(θ)

dΩ
=

(

zZe2

2 p βc

)2
1

[

As,M + sin2(θ/2)
]2 (6.104)

=
dσRut

dΩ
F2(θ). (6.105)

with

F(θ) =
sin2(θ/2)

As,M + sin2(θ/2)
. (6.106)

F(θ) - the so-called screening factor - depends on the scattering angle θ and
the screening parameter As,M. As discussed in Sect. 6.6.1, the term As,M

(the screening parameter) cannot be neglected in the DCS [Eq. (6.105)] for
scattering angles (θ) within a forward (with respect to the electron direction)
angular region narrowing with increasing energy from several degrees (for
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high-Z material) at 200 keV down to less than or much less than a mrad
above 200MeV.

An approximated description of elastic interactions of electrons with screened
Coulomb fields of nuclei can be obtained by the factorization of the MDCS,
i.e., involving Rutherford’s formula [dσRut/dΩ] for particle with z = 1, the
screening factor [F(θ)] and the ratio RMott between the RDCS and MDCS:

dσMott
sc (θ)

dΩ
≃ dσRut

dΩ
F2(θ) RMott. (6.107)

Thus, the corresponding screened differential cross section derived using the
analytical expression from McKinley and Feshbach[6] can be approximated
with

dσMcF
sc (θ)

dΩ
≃ dσRut

dΩ
F2(θ) RMcF. (6.108)

Zeitler and Olsen[7] suggested that for electron energies above 200 keV the
overlap of spin and screening effects is small for all elements and for all
energies; for lower energies the overlapping of the spin and screening effects
may be appreciable for heavy elements and large angles.

Finite Nuclear Size

The ratio between the actual measured and that expected from the point-
like differential cross section expresses the square of nuclear form factor (|F |)
which, in turn, depends on the momentum transfer q, i.e., that acquired by
the target initially at rest:

q =

√

T (T + 2Mc2)

c
, (6.109)

with T from Eq. (6.90) or for Mc2 larger or much larger than the electron
energy from its approximate expression Eq. (6.92).

The approximated (factorized) differential cross section for elastic inter-
actions of electrons with screened Coulomb fields of nuclei [Eq. (6.107)] ac-
counting for the effects due to the finite nuclear size is given by:

dσMott
sc,F (θ)

dΩ
≃ dσRut

dΩ
F2(θ) RMott |F (q)|2 . (6.110)

Thus, using the analytical expression derived by McKinley and Feshbach[6]
[Eq. (6.88)] one obtains that the corresponding screened differential cross
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section [Eq. (6.108)] accounting for the finite nuclear size effects

dσMcF
sc,F (θ)

dΩ
≃ dσRut

dΩ
F

2(θ) RMcF |F (q)|2 (6.111)

=
dσRut

dΩ
F2(θ) |F (q)|2

×
{

1−β2 sin2(θ/2) + Z αβπ sin(θ/2) [1 − sin(θ/2)]
}

.(6.112)

In terms of kinetic energy, one can respectively rewrite Eqs. (6.110, 6.111) as

dσMott
sc,F (T )

dT
=

dσRut

dT
F

2(T ) RMott(T ) |F (q)|2 (6.113)

dσMcF
sc,F (T )

dT
≃ dσRut(T )

dT
F2(T ) RMcF(T ) |F (q)|2 (6.114)

with dσRut/dT from Eq. (6.95), RMott(T ) from Eq. (6.101), RMcF(T ) from
Eq. (6.97) and, using Eqs. (6.90, 6.92, 6.106),

F(T ) =
T

TmaxAs,M + T
.

For instance, the form factor Fexp is

Fexp(q) =

[

1 +
1

12

(qrn
~

)2
]−2

, (6.115)

where rn is the nuclear radius, rn can be parameterized by

rn = 1.27A0.27 fm (6.116)

with A the atomic weight. Equation (6.116) provides values of rn in agreement
up to heavy nuclei (like Pb and U) with those available, for instance, in
Table 1 of Ref.[8] .

Finite Rest Mass of Target Nucleus

The DCS treated in Sects. 6.6.1–6.6.1 is based on the extension of MDCS to
include effects due to interactions on screened Coulomb potentials of nuclei
and their finite size. However, the electron energies were considered small (or
much smaller) with respect to that (Mc2) corresponding to rest mass (M)
target nuclei.

The Rutherford scattering on screened Coulomb fields - i.e., under the
action of a central forces - by massive charged particles at energies large or

91



much larger than Mc2 was treated by Boschini et al.[3] in the CoM system
(e.g., see also Sections 1.6, 1.6.1, 2.1.4.2 of Ref.[4] and references therein).
It was shown that the differential cross section [dσWM(θ′)/dΩ′ with θ′ the
scattering angle in the CoM system] is that one derived for describing the in-
teraction on a fixed scattering center of a particle with i) momentum p′r equal
to the momentum of the incoming particle (i.e., the electron in the present
treatment) in the CoM system and ii) rest mass equal to the relativistic re-
duced mass µrel [e.g., see Equations (1.80, 1.81) at page 28 of Ref.[4]]. µrel is
given by

µrel =
mM

M1,2
(6.117)

=
mMc

√

m2c2 +M2c2 + 2M
√

m2c4 + p2c2
, (6.118)

where p is the momentum of the incoming particle (the electron in the present
treatment) in the laboratory system: m is the rest mass of the incoming
particle (i.e., the electron rest mass); finally, M1,2 is the invariant mass - e.g.,
Section 1.3.2 of Ref.[4] - of the two-particle system. Thus, the velocity of the
interacting particle is [e.g., see Equation (1.82) at page 29 of Ref.[4]]

β ′
rc = c

√

√

√

√

[

1 +

(

µrelc

p′r

)2
]−1

. (6.119)

For an incoming particle with z = 1, dσWM(θ′)/dΩ′ is given by

dσWM′
(θ′)

dΩ′ =

(

Ze2

2 p′r β
′
rc

)2
1

[

As + sin2(θ′/2)
]2 , (6.120)

with

As =

(

~

2 p′r aTF

)2
[

1.13 + 3.76 ×
(

αZ

β ′
r

)2
]

(6.121)

the screening factor [e.g., see Equations (2.87, 2.88) at page 103 of Ref.[4]].
Equation (6.120) can be rewritten as

dσWM′
(θ′)

dΩ′ =
dσRut′(θ′)

dΩ′ F2
CoM(θ′) (6.122)

with
dσRut′(θ′)

dΩ′ =

(

Ze2

2p′rβ
′
rc

)2
1

sin4(θ′/2)
(6.123)
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the corresponding RDCS for the reaction in the CoM system [e.g., see Equa-
tion (1.79) at page 28 of Ref.[4]] and

FCoM(θ′) =
sin2(θ′/2)

As + sin2(θ′/2)
(6.124)

the screening factor. Using, Eqs. (6.90, 6.91), one can respectively rewrite
Eqs. (6.123, 6.124, 6.122, 6.120) as

dσRut′

dT
= π

(

Ze2

p′rβ
′
rc

)2
Tmax

T 2
(6.125)

FCoM(T ) =
T

TmaxAs + T
(6.126)

dσWM′
(T )

dT
=

dσRut′

dT
FCoM(T ) (6.127)

dσWM′
(T )

dT
= π

(

Ze2

p′rβ
′
rc

)2
Tmax

(TmaxAs + T )2 . (6.128)

[e.g., see Equation (2.90) at page 103 of Ref.[4] or Equation (13) of Ref.[3]].
To account for the finite rest mass of target nucleus the factorized MDCS

[Eq. (6.110)] has to be re-expressed in the CoM system using as:

dσMott
sc,F,CoM(θ′)

dΩ′ ≃dσ
Rut′(θ′)

dΩ′ F
2
CoM(θ′) RMott

CoM(θ′) |F (q)|2, (6.129)

where F (q) is the nuclear form factor (Sect. 6.6.1) with q the momentum
transfer to the recoil nucleus [Eq. (6.109)]; finally, as discussed in Sect. 6.6.1,
RMott exhibits almost no dependence on electron energy above ≈ 10 MeV,
thus, since at low energies θ ⋍ θ′ and β ⋍ β ′

r, RMott
CoM(θ′) is obtained replacing

θ and β ′
r with θ′ and β ′

r, respectively, in Eq. (6.99).
Using the analytical expression derived by McKinley and Feshbach[6] , one

finds that the corresponding screened differential cross section accounting for
the finite nuclear size effects [Eqs. (6.111, 6.112)] can be re-expressed as

dσMcF
sc,F,CoM(θ′)

dΩ′ ≃ dσRut′(θ′)

dΩ′ F
2
CoM(θ′) RMcF

CoM(θ′) |F (q)|2 (6.130)

with

RMcF
CoM(θ′) =

{

1−β2
r sin2(θ′/2)+Z αβ ′

rπ sin(θ′/2) [1−sin(θ′/2)]
}

. (6.131)
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Figure 6.5: In MeVcm2/g, nuclear stopping powers in 7Li, 12C, 28Si and 56Fe
- calculated from Eq. (6.136) - and divided by the density of the material as
a function of the kinetic energy of electrons from 200 keV up to 1TeV.

In terms of kinetic energy T , from Eqs. (6.90, 6.91) one can respectively
rewrite Eqs. (6.129, 6.130) as

dσMott
sc,F,CoM(T )

dT
=

dσRut′

dT
F2

CoM(T ) RMott
CoM(T ) |F (q)|2 (6.132)

dσMcF
sc,F,CoM(T )

dT
≃ dσRut′(T )

dT
F2

CoM(T ) RMcF
CoM(T ) |F (q)|2 (6.133)

with dσRut′/dT from Eq. (6.125), FCoM(T ) from Eq. (6.126) and RMcF
CoM(T )

replacing β with β ′
r in Eq. (6.97), i.e.,

RMcF
CoM(T ) =

[

1−β ′
r

T

Tmax
(β ′

r+Zαπ)+Zαβ ′
rπ

√

T

Tmax

]

. (6.134)

Finally, as discussed in Sect. 6.6.1, RMott(T ) exhibits almost no dependence
on electron energy above ≈ 10 MeV, thus, since at low energies θ ⋍ θ′ and
β ⋍ β ′

r, RMott
CoM(T ) is obtained replacing β with β ′

r in Eq. (6.101).

6.6.2 Nuclear Stopping Power of Electrons

Using Eq. (6.132), the nuclear stopping power - in MeVcm−1 - of Coulomb
electron–nucleus interaction can be obtained as

−
(

dE

dx

)Mott

nucl

= nA

∫ Tmax

0

dσMott
sc,F,CoM(T )

dT
T dT (6.135)

with nA the number of nuclei (atoms) per unit of volume [e.g., see Equa-
tion (1.71) of Ref.[4]] and, finally, the negative sign indicates that the energy
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is lost by the electron (thus, achieved by recoil targets). Using the analytical
approximation derived by McKinley and Feshbach[6], i.e., Eq. (6.133), for
the nuclear stopping power one finds

−
(

dE

dx

)McF

nucl

= nA

∫ Tmax

0

dσMcF
sc,F,CoM(T )

dT
T dT. (6.136)

As already mentioned in Sect. 6.6.1, the large momentum transfers -
corresponding to large scattering angles - are disfavored by effects due to
the finite nuclear size accounted for by means of the nuclear form factor
(Sect.6.6.1). For instance, the ratios of nuclear stopping powers of electrons
in silicon are shown in Ref.[1] as a function of the kinetic energies of electrons
from 200 keV up to 1TeV. These ratios are the nuclear stopping powers
calculated neglecting i) nuclear size effects (i.e., for |Fexp|2 = 1) and ii) effects
due to the finite rest mass of the target nucleus [i.e., in Eq. (6.136) replacing
dσMcF

sc,F,CoM(T )/dT with dσMcF
sc,F (T )/dT from Eq. (6.114)] both divided by that

one obtained using Eq. (6.136). Above a few tens of MeV, a larger stopping
power is found assuming |Fexp|2 = 1 and, in addition, above a few hundreds
of MeV the stopping power largely decreases when the effects of nuclear rest
mass are not accounted for.

In Fig. 6.5 , the nuclear stopping powers in 7Li, 12C, 28Si and 56Fe are
shown as a function of the kinetic energy of electrons from 200 keV up to
1TeV. These nuclear stopping powers in MeVcm2/g are calculated from
Eq. (6.136) and divided by the density of the medium.

6.6.3 Non-Ionizing Energy-Loss of Electrons

In case of Coulomb scattering of electrons on nuclei, the non-ionizing energy-
loss can be calculated using (as discussed in Sect. 6.6.1–6.6.2) the MDCRS or
its approximate expression McFDCS [e.g., Eqs. (6.132, 6.133), respectively],
once the screened Coulomb fields, finite sizes and rest masses of nuclei are
accounted for, i.e., in Mev/cm

−
(

dE

dx

)NIEL

n,Mott

= nA

∫ Tmax

Td

T L(T )
dσMott

sc,F,CoM(T )

dT
dT (6.137)

or

−
(

dE

dx

)NIEL

n,McF

= nA

∫ Tmax

Td

T L(T )
dσMcF

sc,F,CoM(T )

dT
dT (6.138)

[e.g., see Equation (4.113) at page 402 and, in addition, Sections 4.2.1–4.2.1.2
of Ref.[4]], where T is the kinetic energy transferred to the target nucleus,
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L(T ) is the fraction of T deposited by means of displacement processes. The
Lindhard partition function, L(T ), can be approximated using the so-called
Norgett–Robintson–Torrens expression [e.g., see Equations (4.121, 4.123) at
pages 404 and 405, respectively, of Ref.[4] (see also references therein)]. Tde =
T L(T ) is the so-called damage energy, i.e., the energy deposited by a recoil
nucleus with kinetic energy T via displacement damages inside the medium. In
Eqs. (6.137, 6.138) the integral is computed from the minimum energy Td -
the so-called threshold energy for displacement, i.e., that energy necessary
to displace the atom from its lattice position - up to the maximum energy
Tmax that can be transferred during a single collision process. For instance,
Td is about 21 eV in silicon requiring electrons with kinetic energies above
≈ 220 kev.

As already discussed with respect to nuclear stopping powers in Sect. 6.6.2,
the large momentum transfers (corresponding to large scattering angles) are
disfavored by effects due to the finite nuclear size accounted for by the nu-
clear form factor. For instance, the ratios of NIELs for electrons in silicon are
shown in Ref.[1] as a function of the kinetic energy of electrons from 220 keV
up to 1TeV. These ratios are the NIELs calculated neglecting i) nuclear size
effects (i.e., for |Fexp|2 = 1) and ii) effects due to the finite rest mass of the tar-
get nucleus [i.e., in Eq. (6.138) replacing dσMcF

sc,F,CoM(T )/dT with dσMcF
sc,F (T )/dT

from Eq. (6.114)] both divided by that one obtained using Eq. (6.138). Above
≈ 10 MeV, the NIEL is ≈ 20% larger assuming |Fexp|2 = 1 and, in addition,
above (100–200)MeV the calculated NIEL largely decreases when the effects
of nuclear rest mass are not accounted for.

6.7 G4eSingleScatteringModel

The G4eSingleScatteringModel performs the single scattering interaction of
electrons on nuclei. The differential cross section (DCS) for the energy trans-
ferred is define in the G4ScreeningMottCrossSection class. In this class the
analytical McKinley and Feshbach [6] Mott differential cross Section approx-
imation is implemented. This CDS is modified by the introduction of the
Moliere’s [9] screening coefficient. In addition the exponential charge distri-
bution Nuclear Form Factor is applied [10]. This treatment is fully performed
in the center of mass system and the usual Lorentz transformations are ap-
plied to obtained the energy and momentum quantities in the laboratory
system after scattering. This model well simulates the interacting process
for low scattering angles and it is suitable for high energy electrons (from
200 keV) incident on medium light target nuclei. The nuclear energy loss
(i.e. nuclear stopping power) is calculated for every single interaction. In
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addition the production of secondary scattered nuclei is simulated from a
threshold kinetic energy which can be decided by the user (threshold energy
for displacement).

6.7.1 The method

In the G4eSingleScatteringModel the method ComputeCrossSectionPerAtom()
performs the total cross section computation. The SetupParticle() and the
DefineMaterial() methods are called to defined the incident and target par-
ticles. Before the total cross section computation, the SetupKinematic()
method of the G4ScreeningMottCrossSection class calculates all the physi-
cal quantities in the center of mass system (CM). The scattering in the CM
system is equivalent to the one of an effective particle which interacts with
a fixed scattering center. The effective particle rest mass is equal to the
relativistic reduced mass of the system µ whose expression is calculated by:

µ = m
Mc2

Ecm
(6.139)

where m and M are rest masses of the electron and of the target nuclei
respectively. Ecm is the total center of mass energy and, since the target is
at rest before scattering, its expression is calculated by:

Ecm =
√

(mc2)2 + (Mc2)2 + 2E ′Mc2 (6.140)

where E = γ′mc2 is the total energy of the electron before scattering in the
laboratory system. The momentum and the scattering angle of the effective
particle are equal to the corresponding quantities calculated in the center of
mass system (p ≡ pcm, θ ≡ θcm) of the incident electron:

pc = p′c
Mc2

Ecm
(6.141)

where p′ is the momentum of the incident electron calculated in the labora-
tory system. The velocity of the effective particle is related with its momen-
tum by the following expression:

1

β2
= 1 +

(µc2

pc

)2

(6.142)

The integration of the DCS is performed by the NuclearCrossSection() method
of the G4ScreeningMottCrossSection:

σtot = 2π

∫ θmax

θmin

dσ(θ)

dΩ
sin θdθ (6.143)
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The integration is performed in the scattering range [0 ;π] but the user can
decide to vary the minimum (θmin) and the maximum (θmax) scattering an-
gles. The DCS is then given by:

dσ(θ)

dΩ
=

(

Ze2

µc2 β2γ

)2
RMcF |FN(q)|2

(

2As + 2 sin2(θ/2)
)2 (6.144)

where Z is the atomic number of the nucleus, As is the screening coefficient
whose expression has been given by Moliere[9] :

As =

(

~

2p aTF

)2[

1.13 + 3.76

(

αZ

β

)2]

(6.145)

where aTF is the Thomas-Fermi screening length given by:

aTF =
0.88534 a0

Z1/3
(6.146)

and a0 is the Bhor radius. RMcF is the ratio of the Mott to the Rutherfor
DCS given by McKinley and Feshbach approximation [6]:

RMcF =

[

1 − β2 sin2(θ/2) + Zαβπ sin(θ/2)
(

1 − sin(θ/2)
)

]

(6.147)

The nuclear form factor for the exponential charge distribution is given by
[10]:

FN(q) =

[

1 +
(qRN)2

12~2

]−2

(6.148)

where RN is the nuclear radius that is parameterized by:

RN = 1.27A0.27 fm. (6.149)

q is the momentum transferred to the nucleus and it is calculated as:

qc =
√

T (T + 2Mc2) (6.150)

where T is the kinetic energy transferred to the nucleus. This kinetic energy
is calculated in the GetNewDirection() method as:

T =
2Mc2(p′c)2

E2
cm

sin2 θ/2. (6.151)

The scattering angle θ calculation is performed in the GetScatteringAngle()
method of G4ScreeningMottCrossSection class. By means of AngleDistribu-
tion() function the scattering angle is chosen randomly according to the total
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cross section distribution (p.d.f. probability density function) by means of
the inverse transform method.

In the SampleSecondary() method of G4eSingleScatteringModel the ki-
netic energy of the incident particle after scattering is then calculated as
E ′

new = E ′ − T where E ′ is the electron incident kinetic energy (in lab.); in
addition the new particle direction and momentum are obtained from the
scattering angle information.

6.7.2 Implementation Details

The scattering angle probability density function f(θ) (p.d.f.) is performed
by the AngleDistribution() of G4ScreeningMottCrossSection class where the
inverse transform method is applied. The normalized cumulative function of
the cross section is calculated as a function of the scattering angle in this
way:

σn(θ) ≡
∫

f(θ)dθ =
2π

σtot

∫ θ

0

dσ(t)

dΩ
sin tdt (6.152)

The normalized cumulative function σn(θ) depends on the DCS and its val-
ues range in the interval [0;1]. After this calculation a random number r,
uniformly distributed in the same interval [0;1], is chosen in order to fix the
cumulative function value (i.e. r ≡ σn(θ)). This number is the probability
to find the scattering angle in the interval [θ; θ + dθ]. The scattering angle
θ is then given by the inverse function of σn(θ).

The threshold energy for displacement Th can by set by the user in her/his
own Physic class by adding the electromagnetic model:
G4eSingleCoulombScatteringModel* mod=

new G4eSingleCoulombScatteringModel();

mod->SetRecoilThreshold(Th);

If the energy lost by the incident particle is grater then this threshold value
a new secondary particle is created for transportation processes. The energy
lost is added to ProposeNonIonizingEnergyDeposit() of the G4ParticleChangeForGamma
class.

In next patches the NIEL and the Lijian’s et al. Mott’s approximations[5]
calculations will be included in the G4eSingleCoulombScatteringModel.
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6.8 Status of this Document

17.11.11 created by C. Consolandi and P.G. Rancoita
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Chapter 7

Energy loss of Charged
Particles
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7.1 Mean Energy Loss

Energy loss processes are very similar for e + /e− , µ + /µ− and charged
hadrons, so a common description for them was a natural choice in Geant4
[1], [2]. Any energy loss process must calculate the continuous and discrete
energy loss in a material. Below a given energy threshold the energy loss is
continuous and above it the energy loss is simulated by the explicit produc-
tion of secondary particles - gammas, electrons, and positrons.

7.1.1 Method

Let
dσ(Z,E, T )

dT

be the differential cross-section per atom (atomic number Z) for the ejection
of a secondary particle with kinetic energy T by an incident particle of total
energy E moving in a material of density ρ. The value of the kinetic energy
cut-off or production threshold is denoted by Tcut. Below this threshold the
soft secondaries ejected are simulated as continuous energy loss by the inci-
dent particle, and above it they are explicitly generated. The mean rate of
energy loss is given by:

dEsoft(E, Tcut)

dx
= nat ·

∫ Tcut

0

dσ(Z,E, T )

dT
T dT (7.1)

where nat is the number of atoms per volume in the material. The total cross
section per atom for the ejection of a secondary of energy
T > Tcut is

σ(Z,E, Tcut) =

∫ Tmax

Tcut

dσ(Z,E, T )

dT
dT (7.2)

where Tmax is the maximum energy transferable to the secondary particle.
If there are several processes providing energy loss for a given particle, then
the total continuous part of the energy loss is the sum:

dEtot
soft(E, Tcut)

dx
=
∑

i

dEsoft,i(E, Tcut)

dx
. (7.3)

These values are pre-calculated during the initialization phase of Geant4

and stored in the dE/dx table. Using this table the ranges of the particle
in given materials are calculated and stored in the Range table. The Range
table is then inverted to provide the InverseRange table. At run time, values
of the particle’s continuous energy loss and range are obtained using these
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tables. Concrete processes contributing to the energy loss are not involved in
the calculation at that moment. In contrast, the production of secondaries
with kinetic energies above the production threshold is sampled by each
concrete energy loss process.

The default energy interval for these tables extends from 100eV to 10TeV
and the default number of bins is 77. For muons and for heavy particles en-
ergy loss processes models are valid for higher energies and can be extended.
For muons uppper limit may be set to 1000PeV .

7.1.2 General Interfaces

There are a number of similar functions for discrete electromagnetic pro-
cesses and for electromagnetic (EM) packages an additional base classes were
designed to provide common computations [2]. Common calculations for dis-
crete EM processes are performed in the class G4V EnergyLossProcess. De-
rived classes (7.1) are concrete processes providing initialisation. The physics
models are implemented using the G4V EmModel interface. Each process
may have one or many models defined to be active over a given energy range
and set of G4Regions. Models are implementing computation of energy loss,
cross section and sampling of final state. The list of EM processes and models
for gamma incident is shown in Table 7.1.

7.1.3 Step-size Limit

Continuous energy loss imposes a limit on the step-size because of the energy
dependence of the cross sections. It is generally assumed in MC programs
(for example, Geant3) that the cross sections are approximately constant
along a step, i.e. the step size should be small enough, so that the change
in cross section along the step is also small. In principle one must use very
small steps in order to insure an accurate simulation, however the computing
time increases as the step-size decreases.

For EM processes the exact solution is available (see 7.3) but is is not
implemented yet for all physics processes including hadronics. A good com-
promise is to limit the step-size by not allowing the stopping range of the
particle to decrease by more than ∼ 20 % during the step. This condition
works well for particles with kinetic energies > 1 MeV, but for lower energies
it gives too short step-sizes, so must be relaxed. To solve this problem a
lower limit on the step-size was introduced. A smooth StepFunction, with
2 parameters, controls the step size. At high energy the maximum step
size is defined by Step/Range ∼ αR (parameter dRoverRange). By default
αR = 0.2. As the particle travels the maximum step size decreases gradually
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Table 7.1: List of process and model classes for charged particles.

EM process EM model Ref.
G4eIonisation G4MollerBhabhaModel 8.1

G4LivermoreIonisationModel 9.8
G4PenelopeIonisationModel 10.1.7
G4PAIModel 7.5
G4PAIPhotModel 7.5

G4ePolarizedIonisation G4PolarizedMollerBhabhaModel 17.1
G4MuIonisation G4MuBetheBlochModel 13.1

G4PAIModel 7.5
G4PAIPhotModel 7.5

G4hIonisation G4BetheBlochModel 12.1
G4BraggModel 12.1
G4ICRU73QOModel 12.2.1
G4PAIModel 7.5
G4PAIPhotModel 7.5

G4ionIonisation G4BetheBlochModel 12.1
G4BraggIonModel 12.1
G4IonParametrisedLossModel 12.2.4

G4NuclearStopping G4ICRU49NuclearStoppingModel 12.1.3
G4mplIonisation G4mplIonisationWithDeltaModel
G4eBremsstrahlung G4SeltzerBergerModel 8.2.1

G4eBremsstrahlungRelModel 8.2.2
G4LivermoreBremsstrahlungModel 9.9
G4PenelopeBremsstrahlungModel 10.1.6

G4ePolarizedBremsstrahlung G4PolarizedBremsstrahlungModel 17.1
G4MuBremsstrahlung G4MuBremsstrahlungModel 13.2
G4hBremsstrahlung G4hBremsstrahlungModel
G4MuPairProduction G4MuPairProductionModel 13.3
G4hPairProduction G4hPairProductionModel
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until the range becomes lower than ρR (parameter finalRange). Default final-
Range ρR = 1mm. For the case of a particle range R > ρR the StepFunction
provides limit for the step size ∆Slim by the following formula:

∆Slim = αRR + ρR(1 − αR)
(

2 − ρR

R

)

. (7.4)

In the opposite case of a small range ∆Slim = R. The figure below shows the
ratio step/range as a function of range if step limitation is determined only
by the expression (7.4).

step
−−−−−−
range

range

finalRange

1

dRoverRange

The parameters of StepFunction can be overwritten using an UI command:

/process/eLoss/StepFunction 0.2 1 mm
To provide more accurate simulation of particle ranges in physics constructors
G4EmStandardPhysics option3 and G4EmStandardPhysics option4 more strict
step limitation is chosen for different particle types.

7.1.4 Run Time Energy Loss Computation

The computation of the mean energy loss after a given step is done by using
the dE/dx, Range, and InverseRange tables. The dE/dx table is used if
the energy deposition (∆T ) is less than allowed limit ∆T < ξT0, where ξ is
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linearLossLimit parameter (by default ξ = 0.01), T0 is the kinetic energy
of the particle. In that case

∆T =
dE

dx
∆s, (7.5)

where ∆T is the energy loss, ∆s is the true step length. When a larger
percentage of energy is lost, the mean loss can be written as

∆T = T0 − fT (r0 − ∆s) (7.6)

where r0 the range at the beginning of the step, the function fT (r) is the
inverse of the Range table (i.e. it gives the kinetic energy of the particle for
a range value of r). By default spline approximation is used to retrieve a
value from dE/dx, Range, and InverseRange tables. The spline flag can be
changed using an UI command:

/process/em/spline false
After the mean energy loss has been calculated, the process computes the
actual energy loss, i.e. the loss with fluctuations. The fluctuation models are
described in Section 7.2.

If deexcitation module (see 14.1) is enabled then simulation of atomic de-
excitation is performed using information on step length and ionisation cross
section. Fluorescence gamma and Auger electrons are produced above the
same threshold energy as δ-electrons and bremsstrahlung gammas. Following
UI commands can be used to enable atomic relaxation:
/process/em/deexcitation myregion true true true
/process/em/fluo true
/process/em/auger true
/process/em/pixe true

7.1.5 Energy Loss by Heavy Charged Particles

To save memory in the case of positively charged hadrons and ions energy
loss, dE/dx, Range and InverseRange tables are constructed only for pro-
ton, antiproton, muons, pions, kaons, and Generic Ion. The energy loss for
other particles is computed from these tables at the scaled kinetic energy
Tscaled :

Tscaled = T
Mbase

Mparticle
, (7.7)
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where T is the kinetic energy of the particle,Mbase andMparticle are the masses
of the base particle (proton or kaon) and particle. For positively changed
hadrons with non-zero spin proton is used as a based particle, for negatively
charged hadrons with non-zero spin - antiproton, for charged particles with
zero spin - K+ or K− correspondingly. The virtual particle Generic Ion is
used as a base particle for for all ions with Z > 2. It has mass, change and
other quantum numbers of the proton. The energy loss can be defined via
scaling relation:

dE

dx
(T ) = q2

eff(F1(T )
dE

dx base
(Tscaled) + F2(T, qeff)), (7.8)

where qeff is particle effective change in units of positron charge, F1 and
F2 are correction function taking into account Birks effect, Block correction,
low-energy corrections based on data from evaluated data bases [5]. For a
hadron qeff is equal to the hadron charge, for a slow ion effective charge is
different from the charge of the ion’s nucleus, because of electron exchange
between transporting ion and the media. The effective charge approach is
used to describe this effect [3]. The scaling relation (7.7) is valid for any
combination of two heavy charged particles with accuracy corresponding to
high order mass, charge and spin corrections [4].

7.1.6 Status of This Document
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7.2 Energy Loss Fluctuations

The total continuous energy loss of charged particles is a stochastic quan-
tity with a distribution described in terms of a straggling function. The
straggling is partially taken into account in the simulation of energy loss
by the production of δ-electrons with energy T > Tcut (Eq.7.2). However,
continuous energy loss (Eq.7.1) also has fluctuations. Hence in the current
GEANT4 implementation different models of fluctuations implementing the
G4V EmFluctuationModel interface:

• G4BohrFluctuations;

• G4IonFluctuations;

• G4PAIModel;

• G4PAIPhotModel;

• G4UniversalFluctuation.

The last model is the default one used in main Physics List and will be de-
scribed below. Other models have limited applicability and will be described
in chapters for ion ionisation and PAI models.

7.2.1 Fluctuations in Thick Absorbers

The total continuous energy loss of charged particles is a stochastic quantity
with a distribution described in terms of a straggling function. The strag-
gling is partially taken into account in the simulation of energy loss by the
production of δ-electrons with energy T > Tc. However, continuous energy
loss also has fluctuations. Hence in the current GEANT4 implementation
two different models of fluctuations are applied depending on the value of
the parameter κ which is the lower limit of the number of interactions of the
particle in a step. The default value chosen is κ = 10. In the case of a high
range cut (i.e. energy loss without delta ray production) for thick absorbers
the following condition should be fulfilled:

∆E > κ Tmax (7.9)

where ∆E is the mean continuous energy loss in a track segment of length s,
and Tmax is the maximum kinetic energy that can be transferred to the atomic
electron. If this condition holds the fluctuation of the total (unrestricted)
energy loss follows a Gaussian distribution. It is worth noting that this
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condition can be true only for heavy particles, because for electrons, Tmax =
T/2, and for positrons, Tmax = T , where T is the kinetic energy of the
particle. In order to simulate the fluctuation of the continuous (restricted)
energy loss, the condition should be modified. After a study, the following
conditions have been chosen:

∆E > κ Tc (7.10)

Tmax <= 2 Tc (7.11)

where Tc is the cut kinetic energy of δ-electrons. For thick absorbers the
straggling function approaches the Gaussian distribution with Bohr’s vari-
ance [4]:

Ω2 = 2πr2
emec

2Nel
Z2

h

β2
Tcs

(

1 − β2

2

)

, (7.12)

where re is the classical electron radius, Nel is the electron density of the
medium, Zh is the charge of the incident particle in units of positron charge,
and β is the relativistic velocity.

7.2.2 Fluctuations in Thin Absorbers

If the conditions 7.10 and 7.11 are not satisfied the model of energy fluctua-
tions in thin absorbers is applied. The formulas used to compute the energy
loss fluctuation (straggling) are based on a very simple physics model of the
atom. It is assumed that the atoms have only two energy levels with binding
energies E1 and E2. The particle-atom interaction can be an excitation with
energy loss E1 or E2, or ionisation with energy loss distributed according to
a function g(E) ∼ 1/E2 :

∫ Tup

E0

g(E) dE = 1 =⇒ g(E) =
E0Tup

Tup − E0

1

E2
. (7.13)

The macroscopic cross section for excitation (i = 1, 2) is

Σi = C
fi

Ei

ln[2mc2 (βγ)2/Ei] − β2

ln[2mc2 (βγ)2/I] − β2
(1 − r) (7.14)

and the ionisation cross section is

Σ3 = C
Tup − E0

E0Tup ln(Tup
E0

)
r (7.15)

where E0 denotes the ionisation energy of the atom, I is the mean ionisation
energy, Tup is the production threshold for delta ray production (or the max-
imum energy transfer if this value smaller than the production threshold),
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Ei and fi are the energy levels and corresponding oscillator strengths of the
atom, and C and r are model parameters.

The oscillator strengths fi and energy levels Ei should satisfy the con-
straints

f1 + f2 = 1 (7.16)

f1· lnE1 + f2· lnE2 = lnI. (7.17)

The cross section formulas 7.14,7.15 and the sum rule equations 7.16,7.17
can be found e.g. in Ref. [1]. The model parameter C can be defined in the
following way. The numbers of collisions (ni, i = 1, 2 for excitation and 3 for
ionisation) follow the Poisson distribution with a mean value 〈ni〉. In a step
of length ∆x the mean number of collisions is given by

〈ni〉 = ∆x Σi (7.18)

The mean energy loss in a step is the sum of the excitation and ionisation
contributions and can be written as

dE

dx
·∆x =

{

Σ1E1 + Σ2E2 +

∫ Tup

E0

Eg(E)dE

}

∆x. (7.19)

From this, using Eq. 7.14 - 7.17, one can see that

C = dE/dx. (7.20)

The other parameters in the fluctuation model have been chosen in the follow-
ing way. Z· f1 and Z· f2 represent in the model the number of loosely/tightly
bound electrons

f2 = 0 for Z = 1 (7.21)

f2 = 2/Z for Z ≥ 2 (7.22)

E2 = 10 eV Z2 (7.23)

E0 = 10 eV . (7.24)

Using these parameter values, E2 corresponds approximately to the K-shell
energy of the atoms ( and Zf2 = 2 is the number of K-shell electrons).
The parameters f1 and E1 can be obtained from Eqs. 7.16 and 7.17. The
parameter r is the only variable in the model which can be tuned. This
parameter determines the relative contribution of ionisation and excitation to
the energy loss. Based on comparisons of simulated energy loss distributions
to experimental data, its value has been fixed as

r = 0.55 (7.25)
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7.2.3 Width Correction Algorithm

This simple parametrization and sampling in the model give good values for
the most probable energy loss in thin layers. The width of the energy loss
distribution (Full Width at Half Maximum, FWHM) in most of the cases
is too small. In order to get good FWHM values a relatively simple width
correction algorithm has been applied. This algorithm rescales the energy
levels E1, E2 and the number of excitations n1, n2 in such a way that the
mean energy loss remains the same. Using this width correction scheme the
model gives not only good most probable energy loss, but good FWHM value
too.

Width correction algorithm is in the model since version 9.2. The updated
version in the model (in version 9.4) causes an important change in the
behaviour of the model: the results become much more stable, i.e. the results
do not change practically when the cuts and/or the stepsizes are changing.
Another important change: the (unphysical) second peak or shoulder in the
energy loss distribution which can be seen in some cases (energy loss in thin
gas layers) in older versions of the model disappeared. Limit of validity
of the model for thin targets: the model gives good (reliable) energy loss
distribution if the mean energy loss in the target is ≥ (few times) ∗ Iexc,
where Iexc is the mean excitation energy of the target material.

This simple model of energy loss fluctuations is rather fast and can be
used for any thickness of material. This has been verified by performing
many simulations and comparing the results with experimental data, such as
those in Ref.[2]. As the limit of validity of Landau’s theory is approached,
the loss distribution approaches the Landau form smoothly.

7.2.4 Sampling of Energy Loss

If the mean energy loss and step are in the range of validity of the Gaussian
approximation of the fluctuation (7.10 and 7.11), the Gaussian sampling is
used to compute the actual energy loss (7.12). For smaller steps the energy
loss is computed in the model under the assumption that the step length (or
relative energy loss) is small and, in consequence, the cross section can be
considered constant along the step. The loss due to the excitation is

∆Eexc = n1E1 + n2E2 (7.26)

where n1 and n2 are sampled from a Poisson distribution. The energy loss
due to ionisation can be generated from the distribution g(E) by the inverse

112



transformation method :

u = F (E) =

∫ E

E0

g(x)dx (7.27)

E = F−1(u) =
E0

1 − uTup−E0

Tup

(7.28)

where u is a uniformly distributed random number ∈ [0, 1]. The contribution
coming from the ionisation will then be

∆Eion =
n3
∑

j=1

E0

1 − uj
Tup−E0

Tup

(7.29)

where n3 is the number of ionisations sampled from the Poisson distribution.
The total energy loss in a step will be ∆E = ∆Eexc + ∆Eion and the energy
loss fluctuation comes from fluctuations in the number of collisions ni and
from the sampling of the ionisation loss.
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7.3 Correcting the Cross Section for Energy

Variation

As described in Sections 7.1 and 3.2.2 the step size limitation is provided
by energy loss processes in order to insure the precise calculation of the
probability of particle interaction. It is generally assumed in Monte Carlo
programs that the particle cross sections are approximately constant during a
step, hence the reaction probability p at the end of the step can be expressed
as

p = 1 − exp (−nsσ(Ei)) , (7.30)

where n is the density of atoms in the medium, s is the step length, Ei is the
energy of the incident particle at the beginning of the step, and σ(Ei) is the
reaction cross section at the beginning of the step.

However, it is possible to sample the reaction probability from the exact
expression

p = 1 − exp

(

−
∫ Ef

Ei

nσ(E)ds

)

, (7.31)

where Ef is the energy of the incident particle at the end of the step, by using
the integral approach to particle transport. This approach is available for pro-
cesses implemented via the G4V EnergyLossProcess and G4V EmProcess
interfaces.

The Monte Carlo method of integration is used for sampling the reaction
probability [1]. It is assumed that during the step the reaction cross section
smaller, than some value σ(E) < σm. The mean free path for the given step
is computed using σm. If the process is chosen as the process happens at the
step, the sampling of the final state is performed only with the probability p =
σ(Ef )/σm, alternatively no interaction happen and tracking of the particle
is continued. To estimate the maximum value σm for the given tracking step
at Geant4 initialisation the energy Em of absoluted maximum σmax of the
cross section for given material is determined and stored. If at the tracking
time particle energy E < Em, then σm = σ(E). For higher initial energies
if ξE > Em then σm = min(σ(E), σ(ξE)). In the opposit case σm = σmax.
Here ξ is a parameter of the algorithm. Its optimal value is connected with
the value of the dRoverRange parameter (see sub-chapter 7.1), by default
ξ = 1−αR = 0.8. Note, that described method is precise if the cross section
has only one maximum, which is a typical case for electromagnetic processes.

The integral variant of step limitation is the default for theG4eIonisation,
G4eBremsstrahlung and some otehr process but is not automatically acti-
vated for others. To do so the boolean UI command can be used:
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/process/eLoss/integral true

The integral variant of the energy loss sampling process is less dependent
on values of the production cuts [2] and allows to have less step limitation,
however it should be applied on a case-by-case basis because may require
extra CPU.
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7.4 Conversion from Cut in Range to Energy

Threshold

In Geant4 charged particles are tracked to the end of their range. The dif-
ferential cross section of δ-electron productions and bremsstrahlung grow
rapidly when secondary energy decrease. If all secondary particles will be
tracked the CPU performance of any Monte Carlo code will be pure. The
traditional solution is to use cuts. The specific of Geant4 [1] is that user
provides value of cut in term of cut in range, which is unique for defined
G4Region or for the complete geometry [2].

Range is used, rather than energy, as a more natural concept for designing
a coherent policy for different particles and materials. Definition of the cer-
tain value of the cut in range means the requirement for precision of spatial
radioactive dose deposition. This conception is more strict for a simulation
code and provides less handles for user to modify final results. At the same
time, it ensures that simulation validated in one geometry is valid also for
the other geometries.

The value of cut is defined for electrons, positrons, gamma and protons.
At the beginning of initialization of Geant4 physics the conversion is per-
formed from unique cut in range to cuts (production thresholds) in kinetic
energy for each G4MaterialCutsCouple [2]. At that moment no energy loss
or range table is created, so computation should be performed using original
formulas. For electrons and positrons ionization above 10keV a simplified
Berger-Seltzer energy loss formula (8.2) is used, in which the density correc-
tion term is omitted. The contribution of the bremsstrahlung is added using
empirical parameterized formula. For T < 10keV the linear dependence of
ionization losses on electron velocity is assumed, bremsstrahlung contribution
is neglected. The stopping range is defined as

R(T ) =

∫ T

0

1

(dE/dx)
dE. (7.32)

The integration has been done analytically for the low energy part and numer-
ically above an energy limit 1 keV . For each cut in range the corresponding
kinetic energy can be found out. If obtained production threshold in kinetic
energy cannot be below the parameter lowlimit (default 1 keV ) and above
highlimit (default 10 GeV ). If in specific application lower threshold is re-
quired, then the allowed energy cut needs to be extended:

G4ProductionCutsTable::GetProductionCutsTable()→SetEnergyRange(lowlimit,highlimit);

or via UI commands
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/cuts/setMinCutEnergy 100 eV
/cuts/setMaxCutEnergy 100 TeV

In contrary to electrons, gammas has no range, so some approximation should
be used for range to energy conversion. An approximate empirical formula is
used to compute the absorption cross section of a photon in an element σabs.
Here, the absorption cross section means the sum of the cross sections of
the gamma conversion, Compton scattering and photoelectric effect. These
processes are the “destructive” processes for photons: they destroy the pho-
ton or decrease its energy. The coherent or Rayleigh scattering changes the
direction of the gamma only; its cross section is not included in the absorp-
tion cross section. The AbsorptionLength Labs vector is calculated for every
material as

Labs = 5/σabs. (7.33)

The factor 5 comes from the requirement that the probability of having no
’destructive’ interaction should be small, hence

exp(−Labsσabs) = exp(−5) = 6.7 × 10−3. (7.34)

The photon cross section for a material has a minimum at a certain energy
Emin. Correspondingly Labs has a maximum at E = Emin, the value of the
maximal Labs is the biggest ”meaningful” cut in absorption length. If the cut
given by the user is bigger than this maximum, a warning is printed and the
cut in kinetic energy is set to the highlimit.

The cut for proton is introduced with Geant4 v9.3. The main goal of
this cut is to limit production of all recoil ions including protons in elastic
scattering processes. A simple linear conversion formula is used to compute
energy threshold from the value of cut in range, in particular, the cut in
range 1 mm corresponds to the production threshold 100keV .

The conversion from range to energy can be studied using G4EmCalculator
class. This class allows access or recalculation of energy loss, ranges and other
values. It can be instantiated and at any place of user code and can be used
after initialisation of Physics Lists:

G4EmCalculator calc;
calc.ComputeEnergyCutFromRangeCut(range, particle, material);

here particle and material may be string names or corresponding const point-
ers to G4ParticleDefinition and G4Material.
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7.5 Photoabsorption Ionization Model

7.5.1 Cross Section for Ionizing Collisions

The Photoabsorption Ionization (PAI) model describes the ionization energy
loss of a relativistic charged particle in matter. For such a particle, the
differential cross section dσi/dω for ionizing collisions with energy transfer ω
can be expressed most generally by the following equations [1]:

dσi

dω
=

2πZe4

mv2

{

f(ω)

ω |ε(ω)|2
[

ln
2mv2

ω |1 − β2ε|−

−ε1 − β2 |ε|2
ε2

arg(1 − β2ε∗)

]

+
F̃ (ω)

ω2

}

, (7.35)

F̃ (ω) =

∫ ω

0

f(ω′)

|ε(ω′)|2
dω′,

f(ω) =
mωε2(ω)

2π2ZN~2
.

Here m and e are the electron mass and charge, ~ is Planck’s constant,
β = v/c is the ratio of the particle’s velocity v to the speed of light c, Z
is the effective atomic number, N is the number of atoms (or molecules)
per unit volume, and ε = ε1 + iε2 is the complex dielectric constant of the
medium. In an isotropic non-magnetic medium the dielectric constant can
be expressed in terms of a complex index of refraction, n(ω) = n1 + in2,
ε(ω) = n2(ω). In the energy range above the first ionization potential I1
for all cases of practical interest, and in particular for all gases, n1 ∼ 1.
Therefore the imaginary part of the dielectric constant can be expressed in
terms of the photoabsorption cross section σγ(ω):

ε2(ω) = 2n1n2 ∼ 2n2 =
N~c

ω
σγ(ω).

The real part of the dielectric constant is calculated in turn from the disper-
sion relation

ε1(ω) − 1 =
2N~c

π
V.p.

∫ ∞

0

σγ(ω
′)

ω′2 − ω2
dω′,

where the integral of the pole expression is considered in terms of the princi-
pal value. In practice it is convenient to calculate the contribution from the
continuous part of the spectrum only. In this case the normalized photoab-
sorption cross section
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σ̃γ(ω) =
2π2

~e2Z

mc
σγ(ω)

[∫ ωmax

I1

σγ(ω
′)dω′

]−1

, ωmax ∼ 100 keV

is used, which satisfies the quantum mechanical sum rule [2]:

∫ ωmax

I1

σ̃γ(ω
′)dω′ =

2π2
~e2Z

mc
.

The differential cross section for ionizing collisions is expressed by the pho-
toabsorption cross section in the continuous spectrum region:

dσi

dω
=

α

πβ2

{

σ̃γ(ω)

ω |ε(ω)|2
[

ln
2mv2

ω |1 − β2ε|−

−ε1 − β2 |ε|2
ε2

arg(1 − β2ε∗)

]

+
1

ω2

∫ ω

I1

σ̃γ(ω
′)

|ε(ω′)|2
dω′
}

, (7.36)

ε2(ω) =
N~c

ω
σ̃γ(ω),

ε1(ω) − 1 =
2N~c

π
V.p.

∫ ωmax

I1

σ̃γ(ω
′)

ω′2 − ω2
dω′.

For practical calculations using Eq. 7.35 it is convenient to represent the
photoabsorption cross section as a polynomial in ω−1 as was proposed in [3]:

σγ(ω) =
4
∑

k=1

a
(i)
k ω

−k,

where the coefficients, a
(i)
k result from a separate least-squares fit to experi-

mental data in each energy interval i. As a rule the interval borders are equal
to the corresponding photoabsorption edges. The dielectric constant can now
be calculated analytically with elementary functions for all ω, except near
the photoabsorption edges where there are breaks in the photoabsorption
cross section and the integral for the real part is not defined in the sense of
the principal value.

The third term in Eq. (7.35), which can only be integrated numerically,
results in a complex calculation of dσi/dω. However, this term is dominant
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for energy transfers ω > 10 keV , where the function |ε(ω)|2 ∼ 1. This is clear
from physical reasons, because the third term represents the Rutherford cross
section on atomic electrons which can be considered as quasifree for a given
energy transfer [4]. In addition, for high energy transfers, ε(ω) = 1−ω2

p/ω
2 ∼

1, where ωp is the plasma energy of the material. Therefore the factor |ε(ω)|−2

can be removed from under the integral and the differential cross section of
ionizing collisions can be expressed as:

dσi

dω
=

α

πβ2 |ε(ω)|2
{

σ̃γ(ω)

ω

[

ln
2mv2

ω |1 − β2ε|−

−ε1 − β2 |ε|2
ε2

arg(1 − β2ε∗)

]

+
1

ω2

∫ ω

I1

σ̃γ(ω
′)dω′

}

. (7.37)

This is especially simple in gases when |ε(ω)|−2 ∼ 1 for all ω > I1 [4].

7.5.2 Energy Loss Simulation

For a given track length the number of ionizing collisions is simulated by a
Poisson distribution whose mean is proportional to the total cross section of
ionizing collisions:

σi =

∫ ωmax

I1

dσ(ω′)

dω′ dω′.

The energy transfer in each collision is simulated according to a distribution
proportional to

σi(> ω) =

∫ ωmax

ω

dσ(ω′)

dω′ dω′.

The sum of the energy transfers is equal to the energy loss. PAI ionisation is
implemented according to the model approach (class G4PAIModel) allowing
a user to select specific models in different regions. Here is an example physics
list:

const G4RegionStore* theRegionStore = G4RegionStore::GetInstance();

G4Region* gas = theRegionStore->GetRegion("VertexDetector");

...

if (particleName == "e-")

{

...

G4eIonisation* eion = new G4eIonisation();
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G4PAIModel* pai = new G4PAIModel(particle,"PAIModel");

// here 0 is the highest priority in region ’gas’

eion->AddEmModel(0,pai,pai,gas);

...

}

...

It shows how to select the G4PAIModel to be the preferred ionisation model
for electrons in a G4Region named VertexDetector. The first argument in
AddEmModel is 0 which means highest priority.

The class G4PAIPhotonModel generates both δ-electrons and photons as
secondaries and can be used for more detailed descriptions of ionisation space
distribution around the particle trajectory.

7.5.3 Photoabsorption Cross Section at Low Energies

The photoabsorption cross section, σγ(ω), where ω is the photon energy, is
used in Geant4 for the description of the photo-electric effect, X-ray trans-
portation and ionization effects in very thin absorbers. As mentioned in the
discussion of photoabsorption ionization (see section 7.5), it is convenient to
represent the cross section as a polynomial in ω−1 [5] :

σγ(ω) =
4
∑

k=1

a
(i)
k ω

−k. (7.38)

Using cross sections from the original Sandia data tables, calculations of pri-
mary ionization and energy loss distributions produced by relativistic charged
particles in gaseous detectors show clear disagreement with experimental
data, especially for gas mixtures which include xenon.

Therefore a special investigation was performed [6] by fitting the coefficients

a
(i)
k to modern data from synchrotron radiation experiments in the energy

range of 10 − 50 eV . The fits were performed for elements typically used
in detector gas mixtures: hydrogen, fluorine, carbon, nitrogen and oxygen.
Parameters for these elements were extracted from data on molecular gases
such as N2, O2, CO2, CH4, and CF4 [7, 8]. Parameters for the noble gases
were found using data given in the tables [9, 10].
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7.5.4 Status of this document

01.12.05 expanded discussion by V. Grichine
08.05.02 re-written by D.H. Wright
16.11.98 created by V. Grichine
20.11.12 updated by V. Ivanchenko
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Chapter 8

Electron and Positron Incident
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8.1 Ionization

8.1.1 Method

The G4eIonisation class provides the continuous and discrete energy losses
of electrons and positrons due to ionization in a material according to the
approach described in Section 7.1. The value of the maximum energy trans-
ferable to a free electron Tmax is given by the following relation:

Tmax =

{

E −mc2 for e+

(E −mc2)/2 for e−
(8.1)

where mc2 is the electron mass. Above a given threshold energy the energy
loss is simulated by the explicit production of delta rays by Möller scattering
(e−e−), or Bhabha scattering (e+e−). Below the threshold the soft electrons
ejected are simulated as continuous energy loss by the incident e±.

8.1.2 Continuous Energy Loss

The integration of 7.1 leads to the Berger-Seltzer formula [1]:

dE

dx

]

T<Tcut

= 2πr2
emc

2nel
1

β2

[

ln
2(γ + 1)

(I/mc2)2
+ F±(τ, τup) − δ

]

(8.2)

with
re classical electron radius: e2/(4πǫ0mc

2)
mc2 mass energy of the electron
nel electron density in the material
I mean excitation energy in the material
γ E/mc2

β2 1 − (1/γ2)
τ γ − 1
Tcut minimum energy cut for δ -ray production
τc Tcut/mc

2

τmax maximum energy transfer: τ for e+, τ/2 for e−

τup min(τc, τmax)
δ density effect function.

In an elemental material the electron density is

nel = Z nat = Z
Navρ

A
.
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Nav is Avogadro’s number, ρ is the material density, and A is the mass of a
mole. In a compound material

nel =
∑

i

Zi nati =
∑

i

Zi
Navwiρ

Ai
,

where wi is the proportion by mass of the ith element, with molar mass Ai .
The mean excitation energies I for all elements are taken from [2].
The functions F± are given by :

F+(τ, τup) = ln(ττup) (8.3)

−τ
2
up

τ

[

τ + 2τup −
3τ 2

upy

2
−
(

τup −
τ 3
up

3

)

y2 −
(

τ 2
up

2
− τ

τ 3
up

3
+
τ 4
up

4

)

y3

]

F−(τ, τup) = −1 − β2 (8.4)

+ ln [(τ − τup)τup] +
τ

τ − τup

+
1

γ2

[

τ 2
up

2
+ (2τ + 1) ln

(

1 − τup

τ

)

]

where y = 1/(γ + 1).
The density effect correction is calculated according to the formalism of

Sternheimer [3]:
x is a kinetic variable of the particle : x = log10(γβ) = ln(γ2β2)/4.606,
and δ(x) is defined by

for x < x0 : δ(x) = 0
for x ∈ [x0, x1] : δ(x) = 4.606x− C + a(x1 − x)m

for x > x1 : δ(x) = 4.606x− C
(8.5)

where the matter-dependent constants are calculated as follows:

hνp = plasma energy of the medium =
√

4πnelr3
emc

2/α =
√

4πnelre~c
C = 1 + 2 ln(I/hνp)
xa = C/4.606
a = 4.606(xa − x0)/(x1 − x0)

m

m = 3.
(8.6)

For condensed media

I < 100 eV

{

for C ≤ 3.681 x0 = 0.2 x1 = 2
for C > 3.681 x0 = 0.326C − 1.0 x1 = 2

I ≥ 100 eV

{

for C ≤ 5.215 x0 = 0.2 x1 = 3
for C > 5.215 x0 = 0.326C − 1.5 x1 = 3
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and for gaseous media

for C < 10. x0 = 1.6 x1 = 4
for C ∈ [10.0, 10.5[ x0 = 1.7 x1 = 4
for C ∈ [10.5, 11.0[ x0 = 1.8 x1 = 4
for C ∈ [11.0, 11.5[ x0 = 1.9 x1 = 4
for C ∈ [11.5, 12.25[ x0 = 2. x1 = 4
for C ∈ [12.25, 13.804[ x0 = 2. x1 = 5
for C ≥ 13.804 x0 = 0.326C − 2.5 x1 = 5.

8.1.3 Total Cross Section per Atom and Mean Free
Path

The total cross section per atom for Möller scattering (e−e−) and Bhabha
scattering (e+e−) is obtained by integrating Eq. 7.2. In Geant4 Tcut is
always 1 keV or larger. For delta ray energies much larger than the excitation
energy of the material (T ≫ I), the total cross section becomes [1] for Möller
scattering,

σ(Z,E, Tcut) =
2πr2

eZ

β2(γ − 1)
× (8.7)

[

(γ − 1)2

γ2

(

1

2
− x

)

+
1

x
− 1

1 − x
− 2γ − 1

γ2
ln

1 − x

x

]

,

and for Bhabha scattering (e+e−),

σ(Z,E, Tcut) =
2πr2

eZ

(γ − 1)
× (8.8)

[

1

β2

(

1

x
− 1

)

+B1 ln x+B2(1 − x) − B3

2
(1 − x2) +

B4

3
(1 − x3)

]

.

Here
γ = E/mc2 B1 = 2 − y2

β2 = 1 − (1/γ2) B2 = (1 − 2y)(3 + y2)
x = Tcut/(E −mc2) B3 = (1 − 2y)2 + (1 − 2y)3

y = 1/(γ + 1) B4 = (1 − 2y)3.

The above formulas give the total cross section for scattering above the
threshold energies

T thr
Moller = 2Tcut and T thr

Bhabha = Tcut. (8.9)

In a given material the mean free path is then

λ = (nat · σ)−1 or λ = (
∑

i nati · σi)
−1 . (8.10)
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8.1.4 Simulation of Delta-ray Production

Differential Cross Section

For T ≫ I the differential cross section per atom becomes [1] for Möller
scattering,

dσ

dǫ
=

2πr2
eZ

β2(γ − 1)
× (8.11)

[

(γ − 1)2

γ2
+

1

ǫ

(

1

ǫ
− 2γ − 1

γ2

)

+
1

1 − ǫ

(

1

1 − ǫ
− 2γ − 1

γ2

)]

and for Bhabha scattering,

dσ

dǫ
=

2πr2
eZ

(γ − 1)

[

1

β2ǫ2
− B1

ǫ
+B2 −B3ǫ+B4ǫ

2

]

. (8.12)

Here ǫ = T/(E −mc2). The kinematical limits of ǫ are

ǫ0 =
Tcut

E −mc2
≤ ǫ ≤ 1

2
for e−e− ǫ0 =

Tcut

E −mc2
≤ ǫ ≤ 1 for e+e−.

Sampling

The delta ray energy is sampled according to methods discussed in Chapter
2. Apart from normalization, the cross section can be factorized as

dσ

dǫ
= f(ǫ)g(ǫ). (8.13)

For e−e− scattering

f(ǫ) =
1

ǫ2
ǫ0

1 − 2ǫ0
(8.14)

g(ǫ) =
4

9γ2 − 10γ + 5

[

(γ − 1)2ǫ2 − (2γ2 + 2γ − 1)
ǫ

1 − ǫ
+

γ2

(1 − ǫ)2

]

(8.15)

and for e+e− scattering

f(ǫ) =
1

ǫ2
ǫ0

1 − ǫ0
(8.16)

g(ǫ) =
B0 −B1ǫ+B2ǫ

2 − B3ǫ
3 +B4ǫ

4

B0 − B1ǫ0 +B2ǫ
2
0 −B3ǫ

3
0 +B4ǫ

4
0

. (8.17)

Here B0 = γ2/(γ2 − 1) and all other quantities have been defined above.
To choose ǫ, and hence the delta ray energy,
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1. ǫ is sampled from f(ǫ)

2. the rejection function g(ǫ) is calculated using the sampled value of ǫ

3. ǫ is accepted with probability g(ǫ).

After the successful sampling of ǫ, the direction of the ejected electron is
generated with respect to the direction of the incident particle. The az-
imuthal angle φ is generated isotropically and the polar angle θ is calculated
from energy-momentum conservation. This information is used to calculate
the energy and momentum of both the scattered incident particle and the
ejected electron, and to transform them to the global coordinate system.

8.1.5 Status of this document

9.10.98 created by L. Urbán.
29.07.01 revised by M.Maire.
13.12.01 minor cosmetic by M.Maire.
24.05.02 re-written by D.H. Wright.
01.12.03 revised by V. Ivanchenko.
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8.2 Bremsstrahlung

The class G4eBremsstrahlung provides the energy loss of electrons and
positrons due to the radiation of photons in the field of a nucleus accord-
ing to the approach described in Section 7.1. Above a given threshold energy
the energy loss is simulated by the explicit production of photons. Below the
threshold the emission of soft photons is treated as a continuous energy loss.

Below electron/positron energies of 1 GeV, the cross section evaluation
is based on a dedicated parameterization, above this limit an analytic cross
section is used. In GEANT4 the Landau-Pomeranchuk-Migdal effect has also
been implemented.

8.2.1 Seltzer-Berger bremsstrahlung model

In order to iprove accuracy of the model described above a new model
G4SeltzerBergerModel have been design which implementing cross section
based on interpolation of published tables [5, 15]. Single-differential cross
section can be written as a sum of a contribution of bremsstrahlung produced
in the field of the screened atomic nucleus dσn/dk, and the part Z dσe/dk
corresponding to bremsstrahlung produced in the field of the Z atomic elec-
trons,

dσ

dk
=
dσn

dk
+ Z

dσe

dk
. (8.18)

The differential cross section depends on the energy k of the emitted photon,
the kinetic energy T1 of the incident electron and the atomic number Z of
the target atom.

Seltzer and Berger have published extensive tables for the differential
cross section dσn/dk and dσe/dk [5, 15], covering electron energies from 1 keV
up to 10GeV, substantially extending previous publications [16]. The results
are in good agreement with experimental data, and provided also the basis of
bremsstrahlung implementations in many Monte Carlo programs (e.g. Pene-
lope, EGS). The estimated uncertainties for dσ/dk are:

• 3% to 5% in the high energy region (T1 ≥ 50MeV),

• 5% to 10% in the intermediate energy region (2 ≥ T1 ≤ 50MeV),

• and 10% at low energies region compared with Pratt results. (T1 ≤
2MeV).

The restricted cross section (7.2) and the energy loss (7.3) are obtained
by numerical integration performed at initialisation stage of Geant4. This
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Figure 8.1: Total cross section comparison between models for Z = 29:
Parametrized Bremsstrahlung Model, Relativistic Model, Bremsstrahlung
Model (Geant4 9.4) and Seltzer-Berger Model. The discontinuities in the
Parametized Model and the Relativistic Model at 1 Mev and 1 GeV, respec-
tively, mark the validity range of these models.

method guarantees consistent description independent of the energy cutoff.
The current version uses an interpolation in tables for 52 available electron
energy points versus 31 photon energy points, and for atomic number Z
ranging from 1 to 99. It is the default bremsstrahlung model in Geant4 since
version 9.5. Figure 8.1 shows a comparison of the total bremsstrahlung cross
sections with the previous implementation, and with the relativistic model.
After the successful sampling of ǫ, the polar angles of the radiated photon are
generated with respect to the parent electron’s momentum. It is difficult to
find simple formulae for this angle in the literature. For example the double
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differential cross section reported by Tsai [12, 13] is

dσ

dkdΩ
=

2α2e2

πkm4

{[

2ǫ− 2

(1 + u2)2
+

12u2(1 − ǫ)

(1 + u2)4

]

Z(Z + 1)

+

[

2 − 2ǫ− ǫ2

(1 + u2)2
− 4u2(1 − ǫ)

(1 + u2)4

]

[

X − 2Z2fc((αZ)2)
]

}

u =
Eθ

m

X =

∫ m2(1+u2)2

tmin

[

Gel
Z(t) +Gin

Z (t)
] t− tmin

t2
dt

Gel,in
Z (t) atomic form factors

tmin =

[

km2(1 + u2)

2E(E − k)

]2

=

[

ǫm2(1 + u2)

2E(1 − ǫ)

]2

.

The sampling of this distribution is complicated. It is also only an approxi-
mation to within a few percent, due at least to the presence of the atomic form
factors. The angular dependence is contained in the variable u = Eθm−1.
For a given value of u the dependence of the shape of the function on Z, E
and ǫ = k/E is very weak. Thus, the distribution can be approximated by a
function

f(u) = C
(

ue−au + due−3au
)

(8.19)

where

C =
9a2

9 + d
a = 0.625 d = 27

where E is in GeV. While this approximation is good at high energies, it be-
comes less accurate around a few MeV. However in that region the ionization
losses dominate over the radiative losses.

The sampling of the function f(u) can be done with three random numbers
ri, uniformly distributed on the interval [0,1]:

1. choose between ue−au and due−3au:

b =

{

a if r1 < 9/(9 + d)
3a if r1 ≥ 9/(9 + d)

2. sample ue−bu:

u = − log(r2r3)

b
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P =

∫ ∞

umax

f(u) du

E (MeV) P(%)
0.511 3.4
0.6 2.2
0.8 1.2
1.0 0.7
2.0 < 0.1

Table 8.1: Angular sampling efficiency

3. check that:

u ≤ umax =
Eπ

m
otherwise go back to 1.

The probability of failing the last test is reported in table 8.1.

The function f(u) can also be used to describe the angular distribution of
the photon in µ bremsstrahlung and to describe the angular distribution in
photon pair production.

The azimuthal angle φ is generated isotropically. Along with θ, this infor-
mation is used to calculate the momentum vectors of the radiated photon
and parent recoiled electron, and to transform them to the global coordinate
system. The momentum transfer to the atomic nucleus is neglected.

8.2.2 Bremsstrahlung of high-energy electrons

Above an electron energy of 1 GeV an analytic differential cross section
representation is used [17], which was modified to account for the density
effect and the Landau-Pomeranchuk-Migdal (LPM) effect [18, 19].

Relativistic Bremsstrahlung cross section

The basis of the implementation is the well known high energy limit of the
Bremsstrahlung process [17],

dσ

dk
=

4αr2
e

3k

[

{y2 + 2[1 + (1 − y)2]}[Z2(Fel − f) + ZFinel]

+ (1 − y)
Z2 + Z

3

]

(8.20)
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The elastic from factor Fel and inelastic form factor Finel, describe the scat-
tering on the nucleus and on the shell electrons, respectively, and for Z > 4
are given by [14]

Fel = log

(

184.15

Z
1
3

)

and Finel = log

(

1194.

Z
2
3

)

.

This corresponds to the complete screening approximation. The Coulomb
correction is defined as [14]

f = α2Z2
∞
∑

n=1

1

n(n2 + α2Z2)

This approach provides an analytic differential cross section for an efficient
evaluation in a Monte Carlo computer code. Note that in this approximation
the differential cross section dσ/dk is independent of the energy of the initial
electron and is also valid for positrons.

The total integrated cross section
∫

dσ/dk dk is divergent, but the energy
loss integral

∫

kdσ/dk dk is finite. This allows the usual separation into
continuous enery loss, and discrete photon production according to Eqs. (7.3)
and (7.2).

Landau Pomeranchuk Migdal (LPM) effect

At higher energies matter effects become more and more important. In
GEANT4 the two leading matter effects, the LPM effect and the dielec-
tric suppresion (or Ter-Mikaelian effect), are considered. The analytic cross
section representation, eq. (8.20), provides the basis for the incorporation of
these matter effects.

The LPM effect (see for example [3, 4, 20] ) is the suppression of photon
production due to the multiple scattering of the electron. If an electron un-
dergoes multiple scattering while traversing the so called “formation zone”,
the bremsstrahlung amplitudes from before and after the scattering can inter-
fere, reducing the probability of bremsstrahlung photon emission (a similar
suppression occurs for pair production). The suppression becomes significant
for photon energies below a certain value, given by

k

E
<

E

ELPM
, (8.21)

where

k photon energy
E electron energy
ELPM characteristic energy for LPM effect (depend on the medium).
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The value of the LPM characteristic energy can be written as

ELPM =
αm2X0

4hc
, (8.22)

where
α fine structure constant
m electron mass
X0 radiation length in the material
h Planck constant
c velocity of light in vacuum.

At high energies (approximately above 1 GeV) the differential cross section
including the Landau-Pomeranchuk-Migdal effect, can be expressed using an
evaluation based on [8, 19, 18]

dσ

dk
=

4αr2
e

3k

[

ξ(s){y2G(s) + 2[1 + (1 − y)2]φ(s)}

× [Z2(Fel − f) + ZFinel] + (1 − y)
Z2 + Z

3

]

(8.23)

where LPM suppression functions are defined by [8]

G(s) = 24s2

(

π

2
−
∫ ∞

0

e−st sin(st)

sinh( t
2
)
dt

)

(8.24)

and

φ(s) = 12s2

(

−π
2

+

∫ ∞

0

e−st sin(st) sinh
( t

2

)

dt

)

(8.25)

They can be piecewise approximated with simple analytic functions, see e.g.
[19]. The suppression function ξ(s) is recursively defined via

s =

√

k ELPM

8E(E − k)ξ(s)

but can be well approximated using an algorithm introduced by [19]. The
material dependent characteristic energy ELPM is defined in Eq. (8.22) ac-
cording to [4]. Note that this definition differs from other definition (e.g.
[18]) by a factor 1

2
.

An additional multiplicative factor governs the dielectric suppression ef-
fect (Ter-Mikaelian effect) [21].

S(k) =
k2

k2 + k2
p

135



The characteristic photon energy scale kp is given by the plasma frequency
of the media, defined as

kp = ~ωp
Ee

mec2
=

~Ee

mec2
·
√

nee2

ǫ0me
.

Both suppression effects, dielectric suppresion and LPM effect, reduce the
effective formation length of the photon, so the suppressions do not simply
multiply.

A consistent treatment of the overlap region, where both suppression
mechanism, was suggested by [22]. The algorithm garanties that the LPM
suppression is turned off as the density effect becomes important. This is
achieved by defining a modified suppression variable ŝ via

ŝ = s ·
(

1 +
k2

p

k2

)

and using ŝ in the LPM suppression functions G(s) and φ(s) instead of s in
Eq. (8.23).

8.2.3 Status of this document

09.10.98 created by L. Urbán.
21.03.02 modif in angular distribution (M.Maire)
27.05.02 re-written by D.H. Wright
01.12.03 minor update by V. Ivanchenko
20.05.04 updated by L.Urban
09.12.05 minor update by V. Ivanchenko
15.03.07 modify definition of Elpm (M.Maire)
12.12.08 update LPM effect and relativistic Model
03.12.09 correct total cross section, formula 3 (M.Maire)
21.11.12 updated by V. Ivanchenko
29.11.13 updated by V. Ivanchenko
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8.3 Positron - Electron Annihilation

8.3.1 Introduction

The process G4eplusAnnihilation simulates the in-flight annihilation of a
positron with an atomic electron. As is usually done in shower programs [1],
it is assumed here that the atomic electron is initially free and at rest. Also,
annihilation processes producing one, or three or more, photons are ignored
because these processes are negligible compared to the annihilation into two
photons [1, 2].

8.3.2 Cross Section

The annihilation in flight of a positron and electron is described by the cross
section formula of Heitler [3, 1]:

σ(Z,E) =
Zπr2

e

γ + 1

[

γ2 + 4γ + 1

γ2 − 1
ln
(

γ +
√

γ2 − 1
)

− γ + 3
√

γ2 − 1

]

(8.26)

where

E = total energy of the incident positron

γ = E/mc2

re = classical electron radius

8.3.3 Sampling the final state

The final state of the e+ e− annihilation process

e+ e− → γa γb

is simulated by first determining the kinematic limits of the photon energy
and then sampling the photon energy within those limits using the differential
cross section. Conservation of energy-momentum is then used to determine
the directions of the final state photons.

If the incident e+ has a kinetic energy T , then the total energy is Ee =
T + mc2 and the momentum is Pc =

√

T (T + 2mc2). The total available
energy is Etot = Ee + mc2 = Ea + Eb and momentum conservation requires
~P = ~Pγa + ~Pγb . The fraction of the total energy transferred to one photon
(say γa) is

ǫ =
Ea

Etot
≡ Ea

T + 2mc2
. (8.27)
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The energy transfered to γa is largest when γa is emitted in the direction of
the incident e+. In that case Eamax = (Etot + Pc)/2 . The energy transfered
to γa is smallest when γa is emitted in the opposite direction of the incident
e+. Then Eamin = (Etot − Pc)/2 . Hence,

ǫmax =
Eamax

Etot
=

1

2

[

1 +

√

γ − 1

γ + 1

]

(8.28)

ǫmin =
Eamin

Etot

=
1

2

[

1 −
√

γ − 1

γ + 1

]

(8.29)

where γ = (T + mc2)/mc2 . Therefore the range of ǫ is [ǫmin ; ǫmax]
(≡ [ǫmin ; 1 − ǫmin]).

8.3.4 Sampling the Gamma Energy

A short overview of the sampling method is given in Chapter 2. The differ-
ential cross section of the two-photon positron-electron annihilation can be
written as [3, 1]:

dσ(Z, ǫ)

dǫ
=
Zπr2

e

γ − 1

1

ǫ

[

1 +
2γ

(γ + 1)2
− ǫ− 1

(γ + 1)2

1

ǫ

]

(8.30)

where Z is the atomic number of the material, re the classical electron radius,
and ǫ ∈ [ǫmin ; ǫmax] . The differential cross section can be decomposed as

dσ(Z, ǫ)

dǫ
=
Zπr2

e

γ − 1
αf(ǫ)g(ǫ) (8.31)

where

α = ln(ǫmax/ǫmin)

f(ǫ) =
1

αǫ
(8.32)

g(ǫ) =

[

1 +
2γ

(γ + 1)2
− ǫ− 1

(γ + 1)2

1

ǫ

]

≡ 1 − ǫ+
2γǫ− 1

ǫ(γ + 1)2
(8.33)

Given two random numbers r, r′ ∈ [0, 1], the photon energies are chosen as
follows:

1. sample ǫ from f(ǫ) : ǫ = ǫmin

(

ǫmax
ǫmin

)r

2. test the rejection function: if g(ǫ) ≥ r′ accept ǫ, otherwise return to
step 1.

Then the photon energies are Ea = ǫEtot Eb = (1 − ǫ)Etot.
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Computing the Final State Kinematics

If θ is the angle between the incident e+ and γa, then from energy-momentum
conservation,

cos θ =
1

Pc

[

T +mc2
2ǫ− 1

ǫ

]

=
ǫ(γ + 1) − 1

ǫ
√

γ2 − 1
. (8.34)

The azimuthal angle, φ, is generated isotropically and the photon momentum
vectors, ~Pγa and ~Pγb , are computed from energy-momentum conservation and
transformed into the lab coordinate system.

Annihilation at Rest

The method AtRestDoIt treats the special case when a positron comes to
rest before annihilating. It generates two photons, each with energy k = mc2

and an isotropic angular distribution.

8.3.5 Status of This Document

09.10.98 created by M. Maire
01.08.01 minor corrections by M. Maire
09.01.02 MeanFreePath by M. Maire
01.12.02 Re-written by D.H. Wright
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8.4 Positron Annihilation into µ+µ− Pair in

Media

The class G4AnnihiToMuPair simulates the electromagnetic production of
muon pairs by the annihilation of high-energy positrons with atomic electrons
[1]. Details of the implementation are given below and can also be found in
Ref.[2].

8.4.1 Total Cross Section

The annihilation of positrons and target electrons producing muon pairs in
the final state (e+e− → µ+µ−) may give an appreciable contribution to the
total number of muons produced in high-energy electromagnetic cascades.
The threshold positron energy in the laboratory system for this process with
the target electron at rest is

Eth = 2m2
µ/me −me ≈ 43.69 GeV , (8.35)

where mµ and me are the muon and electron masses, respectively. The total
cross section for the process on the electron is

σ =
π r2

µ

3
ξ

(

1 +
ξ

2

)

√

1 − ξ , (8.36)

where rµ = reme/mµ is the classical muon radius, ξ = Eth/E, and E is the
total positron energy in the laboratory frame. In Eq. 8.36, approximations
are made that utilize the inequality m2

e ≪ m2
µ.

The cross section as a function of the positron energy E is shown in Fig.8.2.
It has a maximum at E = 1.396Eth and the value at the maximum is σmax =
0.5426 r2

µ = 1.008µb.

8.4.2 Sampling of Energies and Angles

It is convenient to simulate the muon kinematic parameters in the center-of-
mass (c.m.) system, and then to convert into the laboratory frame.

The energies of all particles are the same in the c.m. frame and equal to

Ecm =

√

1

2
me(E +me) . (8.37)

The muon momenta in the c.m. frame are Pcm =
√

E2
cm −m2

µ. In what
follows, let the cosine of the angle between the c.m. momenta of the µ+ and
e+ be denoted as x = cos θcm .
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Figure 8.2: Total cross section for the process e+e− → µ+µ− as a function of
the positron energy E in the laboratory system.
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From the differential cross section it is easy to derive that, apart from
normalization, the distribution in x is described by

f(x) dx = (1 + ξ + x2 (1 − ξ)) dx , −1 ≤ x ≤ 1 . (8.38)

The value of this function is contained in the interval (1+ ξ) ≤ f(x) ≤ 2 and
the generation of x is straightforward using the rejection technique. Fig. 8.3
shows both generated and analytic distributions.

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E= 500 GeV, ξ = .0874 

E = 50 GeV, ξ =.874 

1 + cos θcm
2

cos θcm

E
nt

ri
es

 p
er

 b
in

Figure 8.3: Generated histograms with 106 entries each and the expected
cos θcm distributions (dashed lines) at E = 50 and 500GeV positron energy
in the lab frame. The asymptotic 1 + cos θ2

cm distribution valid for E → ∞
is shown as dotted line.

The transverse momenta of the µ+ and µ− particles are the same, both
in the c.m. and the lab frame, and their absolute values are equal to

P⊥ = Pcm sin θcm = Pcm

√
1 − x2 . (8.39)

The energies and longitudinal components of the muon momenta in the lab
system may be obtained by means of a Lorentz transformation. The velocity
and Lorentz factor of the center-of-mass in the lab frame may be written as

β =

√

E −me

E +me
, γ ≡ 1

√

1 − β2
=

√

E +me

2me
=
Ecm

me
. (8.40)
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The laboratory energies and longitudinal components of the momenta of the
positive and negative muons may then be obtained:

E+ = γ (Ecm + xβ Pcm) , P+‖ = γ (βEcm + xPcm) , (8.41)

E− = γ (Ecm − xβ Pcm) , P−‖ = γ (βEcm − xPcm) . (8.42)

Finally, for the vectors of the muon momenta one obtains:

P+ = (+P⊥ cosϕ,+P⊥ sinϕ, P+‖) , (8.43)

P− = (−P⊥ cosϕ,−P⊥ sinϕ, P−‖) , (8.44)

where ϕ is a random azimuthal angle chosen between 0 and 2 π. The z-axis
is directed along the momentum of the initial positron in the lab frame.

The maximum and minimum energies of the muons are given by

Emax ≈ 1

2
E
(

1 +
√

1 − ξ
)

, (8.45)

Emin ≈ 1

2
E
(

1 −
√

1 − ξ
)

=
Eth

2
(

1 +
√

1 − ξ
) . (8.46)

The fly-out polar angles of the muons are approximately

θ+ ≈ P⊥/P+‖ , θ− ≈ P⊥/P−‖ ; (8.47)

the maximal angle θmax ≈ me

mµ

√

1 − ξ is always small compared to 1.

Validity

The process described is assumed to be purely electromagnetic. It is based
on virtual γ exchange, and the Z-boson exchange and γ − Z interference
processes are neglected. The Z-pole corresponds to a positron energy of
E = M2

Z/2me = 8136 TeV. The validity of the current implementation is
therefore restricted to initial positron energies of less than about 1000TeV.

8.4.3 Status of this document

05.02.03 created by H.Burkhardt
14.04.03 minor re-wording by D.H. Wright
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8.5 Positron Annihilation into Hadrons in Me-

dia

8.5.1 Introduction

The process G4eeToHadrons simulates the in-flight annihilation of a positron
with an atomic electron into hadrons [1]. It is assumed here that the atomic
electron is initially free and at rest. Currently only two-pion production is
available with a validity range up to 1 TeV.

8.5.2 Cross Section

The annihilation of positrons and target electrons producing pion pairs in the
final state (e+e− → π+π−) may give an appreciable contribution to electron-
jet conversion at the LHC, and for the increasing total number of muons
produced in the beam pipe of the linear collider [1]. The threshold positron
energy in the laboratory system for this process with the target electron at
rest is

Eth = 2m2
π/me −me ≈ 70.35 GeV , (8.48)

where mπ and me are the pion and electron masses, respectively. The total
cross section is dominated by the reaction

e+e− → ργ → π+π−γ, (8.49)

where γ is a radiative photon and ρ(770) is a well known vector meson. This
radiative correction is essential, because it significantly modifies the shape of
the resonance. Details of the theory are described in [2], in which the main
term and the leading α2 corrections are taken into account.

8.5.3 Sampling the final state

The final state of the e + e− annihilation process 8.49 is simulated by first
determining the kinematic limits of the photon energy in the center of mass
system and then sampling the photon energy within those limits using the
differential cross section. Conservation of energy-momentum is then used to
determine the four-momentum of the pion final state. Then the backward
transformation to the laboratory system is performed.

8.5.4 Status of this document

09.12.05 created by V. Ivanchenko
10.12.10 revised by V. Ivanchenko
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Chapter 9

Low Energy Livermore
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9.1 Introduction

Additional electromagnetic physics processes for photons, electrons, hadrons
and ions have been implemented in Geant4 in order to extend the validity
range of particle interactions to lower energies than those available in the
standard Geant4 electromagnetic processes [1] Because atomic shell structure
is more important in most cases at low energies than it is at higher energies,
the low energy processes make direct use of shell cross section data. The
standard processes, which are optimized for high energy physics applications,
rely on parameterizations of these data.

The low energy processes include the photo-electric effect, Compton scat-
tering, Rayleigh scattering, gamma conversion, bremsstrahlung and ioniza-
tion. Fluorescence and Auger electron emission of excited atoms is also
considered.

Some features common to all low energy processes currently implemented
in Geant4 are summarized in this section. Subsequent sections provide more
detailed information for each process.

9.1.1 Physics

The low energy processes of Geant4 represent electromagnetic interactions
at lower energies than those covered by the equivalent Geant4 standard elec-
tromagnetic processes.

The current implementation of low energy processes is valid for energies
down to 10eV and can be used up to approximately 100GeV for gamma
processes. For electron processes upper limit is significantly below. It covers
elements with atomic number between 1 and 99.

All processes involve two distinct phases:

• the calculation and use of total cross sections, and

• the generation of the final state.

Both phases are based on the theoretical models and on exploitation of eval-
uated data.

9.1.2 Data Sources

The data used for the determination of cross-sections and for sampling of
the final state are extracted from a set of publicly distributed evaluated data
libraries:

• EPDL97 (Evaluated Photons Data Library) [2];

149



• EEDL (Evaluated Electrons Data Library) [3];

• EADL (Evaluated Atomic Data Library) [4];

• binding energy values based on data of Scofield [5].

Evaluated data sets are produced through the process of critical compar-
ison, selection, renormalization and averaging of the available experimental
data, normally complemented by model calculations. These libraries provide
the following data relevant for the simulation of Geant4 low energy processes:

• total cross-sections for photoelectric effect, Compton scattering, Rayleigh
scattering, pair production and bremsstrahlung;

• subshell integrated cross sections for photo-electric effect and ioniza-
tion;

• energy spectra of the secondaries for electron processes;

• scattering functions for the Compton effect;

• binding energies for electrons for all subshells;

• transition probabilities between subshells for fluorescence and the Auger
effect.

The energy range covered by the data libraries extends from 100 GeV
down to 1 eV for Rayleigh and Compton effects, down to the lowest binding
energy for each element for photo-electric effect and ionization, and down to
10 eV for bremsstrahlung.

9.1.3 Distribution of the Data Sets

The author of EPDL97 [2], who is also responsible for the EEDL [3] and
EADL [4] data libraries, Dr. Red Cullen, has kindly permitted the libraries
and their related documentation to be distributed with the Geant4 toolkit.
The data are reformatted for Geant4 input. They can be downloaded from
the source code section of the Geant4 page: http://cern.ch/geant4/geant4.html.

The EADL, EEDL and EPDL97 data-sets are also available from sev-
eral public distribution centres in a format different from the one used by
Geant4 [6].
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9.1.4 Calculation of Total Cross Sections

The energy dependence of the total cross section is derived for each process
from the evaluated data libraries. For ionisation, bremsstrahlung and Comp-
ton scattering the total cross is obtained by interpolation according to the
formula [7]:

log(σ(E)) =
log(σ1)log(E2/E) + log(σ2)log(E/E1)

log(E2/E1)
(9.1)

where E is actial energy, E1 and E2 are respectively the closest lower and
higher energy points for which data (σ1 and σ2) are available. For other
processes interpolation method is chosen depending on cross section shape.

9.1.5 Status of the document
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9.2 Compton Scattering

9.2.1 Total Cross Section

The total cross section for the Compton scattering process is determined
from the data as described in section 9.1.4.

9.2.2 Sampling of the Final State

For low energy incident photons, the simulation of the Compton scattering
process is performed according to the same procedure used for the “standard”
Compton scattering simulation, with the addition that Hubbel’s atomic form
factor [1] or scattering function, SF , is taken into account. The angular and
energy distribution of the incoherently scattered photon is then given by
the product of the Klein-Nishina formula Φ(ǫ) and the scattering function,
SF (q) [2]

P (ǫ, q) = Φ(ǫ) × SF (q). (9.2)

ǫ is the ratio of the scattered photon energy E ′, and the incident photon
energy E. The momentum transfer is given by q = E × sin2(θ/2), where θ is
the polar angle of the scattered photon with respect to the direction of the
parent photon. Φ(ǫ) is given by

Φ(ǫ) ∼= [
1

ǫ
+ ǫ][1 − ǫ

1 + ǫ2
sin2θ]. (9.3)

The effect of the scattering function becomes significant at low energies,
especially in suppressing forward scattering [2].

The sampling method of the final state is based on composition and re-
jection Monte Carlo methods [3, 4, 5], with the SF function included in the
rejection function

g(ǫ) =

[

1 − ǫ

1 + ǫ2
sin2 θ

]

× SF (q), (9.4)

with 0 < g(ǫ) < Z. Values of the scattering functions at each momentum
transfer, q, are obtained by interpolating the evaluated data for the corre-
sponding atomic number, Z.

The polar angle θ is deduced from the sampled ǫ value. In the azimuthal
direction, the angular distributions of both the scattered photon and the
recoil electron are considered to be isotropic [6].

Since the incoherent scattering occurs mainly on the outermost electronic
subshells, the binding energies can be neglected, as stated in reference [6].
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The momentum vector of the scattered photon,
−→
P ′

γ, is transformed into the
World coordinate system. The kinetic energy and momentum of the recoil
electron are then

Tel = E −E ′

−→
Pel =

−→
Pγ −

−→
P ′

γ .

9.2.3 Status of the document
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9.3 Compton Scattering by Linearly Polar-

ized Gamma Rays

9.3.1 The Cross Section

The quantum mechanical Klein - Nishina differential cross section for polar-
ized photons is [Heitler 1954]:

dσ

dΩ
=

1

4
r2
0

hν2

hν2
o

hν2
o

hν2

[

hνo

hν
+
hν

hνo
− 2 + 4cos2Θ

]

where Θ is the angle between the two polarization vectors. In terms of the
polar and azimuthal angles (θ, φ) this cross section can be written as

dσ

dΩ
=

1

2
r2
0

hν2

hν2
o

hν2
o

hν2

[

hνo

hν
+
hν

hνo
− 2cos2φsin2θ

]

.

9.3.2 Angular Distribution

The integration of this cross section over the azimuthal angle produces the
standard cross section. The angular and energy distribution are then ob-
tained in the same way as for the standard process. Using these values for
the polar angle and the energy, the azimuthal angle is sampled from the
following distribution:

P (φ) = 1 − a

b
cos2φ

where a = sin2θ and b = ǫ+1/ǫ. ǫ is the ratio between the scattered photon
energy and the incident photon energy.

9.3.3 Polarization Vector

The components of the vector polarization of the scattered photon are cal-
culated from

~ǫ′⊥ =
1

N

(

ĵcosθ − k̂sinθsinφ
)

sinβ

~ǫ′‖ =

[

Nî− 1

N
ĵsin2θsinφcosφ− 1

N
k̂sinθcosθcosφ

]

cosβ

where
N =

√

1 − sin2θcos2φ.
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cosβ is calculated from cosΘ = Ncosβ, while cosΘ is sampled from the Klein
- Nishina distribution.

The binding effects and the Compton profile are neglected. The kinetic
energy and momentum of the recoil electron are then

Tel = E − E ′

~Pel = ~Pγ − ~P ′
γ.

The momentum vector of the scattered photon ~Pγ and its polarization
vector are transformed into the World coordinate system. The polarization
and the direction of the scattered gamma in the final state are calculated in
the reference frame in which the incoming photon is along the z-axis and has
its polarization vector along the x-axis. The transformation to the World

coordinate system performs a linear combination of the initial direction, the
initial poalrization and the cross product between them, using the projections
of the calculated quantities along these axes.

9.3.4 Unpolarized Photons

A special treatment is devoted to unpolarized photons. In this case a random
polarization in the plane perpendicular to the incident photon is selected.

9.3.5 Status of this document
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9.4 Rayleigh Scattering

9.4.1 Total Cross Section

The total cross section for the Rayleigh scattering process is determined from
the data as described in section 9.1.4.

9.4.2 Sampling of the Final State

The coherent scattered photon angle θ is sampled according to the distribu-
tion obtained from the product of the Rayleigh formula (1 + cos2 θ) sin θ and
the square of Hubbel’s form factor FF 2(q) [1] [2]

Φ(E, θ) = [1 + cos2 θ] sin θ × FF 2(q), (9.5)

where q = 2E sin(θ/2) is the momentum transfer.
Form factors introduce a dependency on the initial energy E of the photon

that is not taken into account in the Rayleigh formula. At low energies,
form factors are isotropic and do not affect angular distribution, while at
high energies they are forward peaked. For effective sampling of final state a
method proposed by D.E. Cullen [2] has been implemented: form factor data
were fitted and fitted parameters included in the G4LivermoreRayleighModel.

The sampling procedure is following:

1. atom is selected randomly according to cross section;

2. cosθ is sampled as proposed in [2];

3. azimuthal angle is sampled uniformly.

9.4.3 Status of this document
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9.5 Gamma Conversion

9.5.1 Total cross-section

The total cross-section of the Gamma Conversion process is determined from
the data as described in section 9.1.4.

9.5.2 Sampling of the final state

For low energy incident photons, the simulation of the Gamma Conversion
final state is performed according to [1].

The secondary e± energies are sampled using the Bethe-Heitler cross-
sections with Coulomb correction.

The Bethe-Heitler differential cross-section with the Coulomb correction
for a photon of energy E to produce a pair with one of the particles having
energy ǫE (ǫ is the fraction of the photon energy carried by one particle of
the pair) is given by [2]:

dσ(Z,E, ǫ)

dǫ
=

r2
0αZ(Z + ξ(Z))

E2

[

(ǫ2 + (1 − ǫ)2)

(

Φ1(δ) −
F (Z)

2

)

+

+
2

3
ǫ(1 − ǫ)

(

Φ2(δ) −
F (Z)

2

)]

where Φi(δ) are the screening functions depending on the screening vari-
able δ [1].

The value of ǫ is sampled using composition and rejection Monte Carlo
methods [1, 3, 4].

After the successful sampling of ǫ, the process generates the polar angles of
the electron with respect to an axis defined along the direction of the parent
photon. The electron and the positron are assumed to have a symmetric
angular distribution. The energy-angle distribution is given by[5]:

dσ

dpdΩ
=

2α2e2

πkm4

[(

2x(1 − x)

(1 + l)

2

− 12lx(1 − x)

(1 + l)4

)

(Z2 + Z)+

+

(

2x2 − 2x+ 1

(1 + l)2
+

4lx(1 − x)

(1 + l)4

)

(X − 2Z2f((αZ)2))

]

where k is the photon energy, p the momentum and E the energy of the
electron of the e± pair x = E/k and l = E2θ2/m2. The sampling of this
cross-section is obtained according to [1].

159



The azimuthal angle φ is generated isotropically.
This information together with the momentum conservation is used to

calculate the momentum vectors of both decay products and to transform
them to the GEANT coordinate system. The choice of which particle in the
pair is the electron/positron is made randomly.

9.5.3 Status of the document
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9.6 Triple Gamma Conversion

A new model class G4BoldyshevTripletModel was developed to simulate the
pair production by linearly polarized gamma rays on electrons For the an-
gular distribution of electron recoil we used the cross section by Vinokurov
and Kuraev [1] using the Borsellino diagrams in the high energy For energy
distribution for the pair, we used Boldyshev [2] formula that differs only in
the normalization from Wheeler-Lamb. The cross sections include a cut off
for momentum detections.

9.6.1 Method

The first step is sample the probability to have an electron recoil with mo-
mentum greater than a threshold define by the user (by default, this value is
p0 = 1 in units of mc). This probability is

σ(p ≥ p0) = αr2
0

(

82

27
− 14

9
lnX0 +

4

15
X0 − 0.0348X2

0 + 0.008X3
0 − ...

)

(9.6)

X0 = 2

(

√

p2
0+ − 1

)

. (9.7)

Since that total cross section is σ = αr2
0

(

28
4
ln2Eγ − 218

27

)

, if a random number
is ξ ≥ σ(p ≥ p0)/σ we create the electron recoil, otherwise we deposited the
energy in the local point.

9.6.2 Azimuthal Distribution for Electron Recoil

The expression for the differential cross section is composed of two terms
which express the azimuthal dependence as follows:

dσ = dσ(t) − Pdσ(l)cos(2ϕ) (9.8)

Where, both dσ(t) and dσ(l), are independent of the azimuthal angle, ϕ,

referred to an origin chosen in the direction of the polarization vector ~P of
the incoming photons.

9.6.3 Monte Carlo Simulation of the Asymptotic Ex-
pression

In this section we present an algorithm for Monte Carlo simulation of the
asymptotic expressions calculate by Vinokurov et.al. [1].
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We must generate random values of θ and ϕ distributed with probability
proportional to the following function f(θ, ϕ), for θ restricted inside of its
allowed interval value [2] (0, or θmax(p0)):

f (θ, ϕ) =
sin θ

cos3 θ
(F1 (θ) − P cos (2ϕ)FP (θ)) (9.9)

F1 (θ) = 1 − 1 − 5 cos2 θ

cos θ
ln (cot (θ/2)) (9.10)

FP (θ) = 1 − sin2 θ

cos θ
ln (cot (θ/2)) (9.11)

As we will see, for θ < π/2, F1 is several times greater than FP , and since
both are positive, it follows that f is positive for any possible value of P
(0 ≤ P ≤ 1).

Since F1 is the dominant term in expression , it is more convenient to
begin developing the algorithm of this term, belonging to the unpolarized
radiation.

9.6.4 Algorithm for Non Polarized Radiation

The algorithm was described in Ref.[3]. We must generate random values of

θ between 0 and θmax = arccos
(

E1−mc2

p0
+mc2 E1+mc2

Eγp0

)

, E1 =
√

p2
0 + (mc2)2

distributed with probability proportional to the following function f1(θ):

f1(θ) = sin(θ)
cos3(θ)

(

1 − 1−5 cos2(θ)
cos(θ)

ln(cot(θ/2))
)

= sin(θ)
cos3(θ)

× F1 (θ)
(9.12)

By substitution cos(θ/2) =
√

1+cosθ
2

and sin(θ/2) =
√

1−cosθ
2

, We can

write:

ln (cot (θ/2)) =
1

2
ln

(

1 + cos θ

1 − cos θ

)

(9.13)

In order to simulate the f1 function, it may be decomposed in two factors:
the first, sin(θ)/cos3(θ), easy to integrate, and the other, F1(θ), which may
constitute a reject function, on despite of its θ = 0 divergence. This is
possible because they have very low probability. On other hand, θ values
near to zero are not useful to measure polarization because for those angles
it is very difficult to determine the azimuthal distribution (due to multiple
scattering).
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Then, it is possible to choose some value of θ0, small enough that it is not
important that the sample is fitted rigorously for θ < θ0, and at the same
time F1(θ0) is not too big.

Modifying F1 so that it is constant for θ ≤ θ0, we may obtain an adequate
reject function. Doing this, we introduce only a very few missed points, all
of which lie totally outside of the interesting region.

Expanding F1 for great values of θ, we see it is proportional to cos2θ:

F1 (θ) → 14

3
cos2 θ

(

1 +
33

35
cos2 θ + . . .

)

, if θ → π/2

Thus, it is evident that F1 divided by cos2(θ) will be a better reject function,
because it tends softly to a some constant value (14/3 = 4, 6666...) for large
θs, whereas its behavior is not affected in the region of small θs, where
cos(θ) → 1.

It seems adequate to choose θ0 near 50, and, after some manipulation
looking for round numbers we obtain:

F1 (4.470)

cos2 (4.470)
∼= 14.00

Finally we define a reject function:

r(θ) = 1
14

F1(θ)
cos2(θ)

= 1
14 cos2(θ)

(

1 − 1−5 cos2(θ)
2 cos(θ)

ln
(

1+cos θ
1−cos θ

)

)

; for θ ≥ 4.470

r (θ) = 1 ; forθ ≤ 4.470

(9.14)

Now we have a probability distribution function (PDF) for θ, p(θ) = Cf1(θ),
expressed as a product of another PDF, π(θ), by the reject function:

p (θ) = Cf1 (θ) ∼= C
′
π (θ) r (θ) (9.15)

where C is the normalization constant belonging to the function p(θ).
One must note that the equality between C ∼ f1(θ) and C

′
π(θ)r(θ) is

not exact for small values of θ, where we have truncated the infinity of F1(θ);
but this can not affect appreciably the distribution because f1 → 0 there.
Now the PDF π(θ) is:

π(θ) = Cπ
14sin(θ)

cos(θ)
(9.16)

From the normalization, the constant Cπ results:
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Cπ =
1

14
∫ θmax
0

sin(θ)
cos(θ)

dθ
=

−1

14 ln (cos(θmax))
=

1

7
ln
( ω

4m

)

(9.17)

And the relation with C is given by:

C =
1

∫ θmax
0

f1(θ)dθ
∼= C ′Cπ (9.18)

Then we obtain the cumulative probability by integrating the PDF π(θ):

Pπ =

∫ θ

0

π(θ′)dθ′ =
−14 ln(cos(θ))

7 ln
(

ω
4m

) =
2 ln(cos(θ))

ln (4m/ω)
(9.19)

Finally for the Monte Carlo method we sample a random number ξ1 (between
0 and 1), which is defined as equal to Pπ , and obtain the corresponding θ
value:

ξ1 =
2 ln(cos θ)

ln (4m/ω)
=

ln(cos θ)

ln (cos(θmax))

Then,

θ = arccos

(

(

4m

ω

)

ξ1
2

)

(9.20)

Another random number ξ2 is sampled for the reject process: the θ value is
accepted if ξ2 ≤ r(θ), and reject in the contrary.

For θ ≤ 4, 470 all values are accepted. It happens automatically without
any modification in the algorithm previously defined (it is not necessary to
define the truncated reject function for θ < θ0).

9.6.5 Algorithm for Polarized Radiation

The algorithm was also described in Ref.[3]. As we have seen, the azimuthal
dependence of the differential cross section is given by the expressions and :

f (θ, ϕ) =
sin θ

cos3 θ
(F1 (θ) − P cos (2ϕ)FP (θ)) (9.21)

FP (θ) = 1 − sin2 θ

cos θ
ln (cot (θ/2)) (9.22)
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We see that FP tends to 1 at θ = 0, decreases monotonically to 0 as θ goes
to π/2.

Furthermore, the expansion of FP for θ near π/2 shows that it is propor-
tional to cos2(θ), in virtue of which FP/cos

2(θ) tends to a non null value,
2/3. This value is exactly 7 times the value of F1/cos

2(θ).
This suggests applying the combination method, rearranging the whole

function as follows:

f(θ, ϕ) = tan(θ)
F1(θ)

cos2(θ)

(

1 − cos(2ϕ)P
FP (θ)

F1(θ)

)

(9.23)

and the normalized PDF p(θ, ϕ):

p(θ, ϕ) = Cf(θ, ϕ) (9.24)

where is C the normalization constant

1

C
=

∫ θmax

0

∫ 2π

0

f(θ, ϕ) dϕdθ (9.25)

Taking account that
∫ 2π

0
cos(2ϕ) dϕ = 0, then:

1

C
= 2π

∫ θmax

0

tan(θ)
F1(θ)

cos2(θ)
dθ (9.26)

On the other hand the integration over the azimuthal angle is straightforward
and gives:

q(θ) =

∫ 2π

0

p(θ, ϕ)dϕ = 2πC tan(θ)
F1(θ)

cos2(θ)
(9.27)

and p(ϕ/θ) is the conditional probability of ϕ given θ:

p(ϕ/θ) = p(θ,ϕ)
q(θ)

= 1

2πC tan(θ)
F1(θ)

cos2(θ)

C sin(θ)
cos3(θ)

F1(θ)
(

1 − cos(2ϕ)P FP (θ)
F1(θ)

)

= 1
2π

(

1 − cos(2ϕ)P FP (θ)
F1(θ)

)

(9.28)
Now the procedure consists of sampling θ according the PDF q(θ); then, for
each value of θ we must sample ϕ according to the conditional PDF p(ϕ/θ).

Knowing that F1 is several times greater than FP , we can see that P
F1/FP << 1, and thus p(ϕ/θ) maintains a nearly constant value slightly
diminished in some regions of ϕ. Consequently the ϕ sample can be done
directly by the rejecting method with high efficiency.

On the other hand, q(θ) is the same function p(θ) given by , that is the
PDF for unpolarized radiation, q(θ) ∼= C ′π(θ)r(θ), so we can sample θ with
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exactly the same procedure, specified as follows:
1.- We begin sampling a random number ξ1 and obtain θ from :

θ = arccos

(

(

4m

ω

)

ξ1
2

)

2.- Then we sample a second random number ξ2 and accept the values
of θ if ξ2 ≤ r(θ), where r(θ) is the same expression defined before:

r (θ) =
1

14 cos2θ

(

1 − 1 − 5cos2θ

2 cos θ
ln

(

1 + cos θ

1 − cos θ

))

For θ ≥ 4, 470 and for θ ≤ 4, 470 all values are accepted.
3.- Now we sample ϕ. According to the reject method, we sample a

third random number ξ3 (which is defined as ϕ/2π) and evaluate the reject
function (which is essentially):

rθ(ξ3) =
1

2π

(

1 − cos (4πξ3)P
FP (θ)

F1 (θ)

)

(9.29)

=
1

2π

(

1 − cos(4πξ3)P
cos θ − sin2 θ ln

(

cot
(

θ
2

))

cosθ − (1 − 5cos2θ) ln
(

cot
(

θ
2

))

)

(9.30)

4.- Finally, with a fourth random number ξ4 , we accept the values of
ϕ = 2πξ4 if ξ4 ≤ rθ(ξ3).

9.6.6 Sampling of Energy

For the electron recoil we calculate the energy from the maximum momentum
that can take according with the θ angle

Er = mc2
(S + (mc2)2)

D2
(9.31)

Where
S = mc2 (2Egamma +mc2)

D2 = 4Smc2 + (S − (mc2)2)
2
sin2(θ)

The remnant energy is distributed to the pair according to the Boldyshev
formula [2](x is the fraction of the positron energy):

2π
d2σ

dxdφ
= 2αr2

0 {[1 − 2x (1 − x)]J1(p0) + 2x (1 − x) [1 − P cos(φ)]J2(p0)}
(9.32)
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J1(p0) = 2

(

t
cosh(t)

sinh(t)
− ln(2 sinh(t))

)

J2(p0) = −2

3
ln(2 sinh(t))+t

cosh(t)

sinh(t)
+

sinh(t) − t cosh3(t)

3 sinh3(t)
, sinh(2t) = p0

This distribution can by write like a PDF for x:

P (x) = N (1 − Jx(1 − x)) (9.33)

where N is a normalization constant and J = (J1 − J2)/J1.
Solving for x (ξ is a random number):

x =
c
1/3
1

2J
+
J − 4

2c
1/3
1

+
1

2
(9.34)

c1 = (−6 + 12rn + J + 2a) J2

a =
(

16−3J−36rn+36Jr2
n+6rnJ2

J

)

rn = ξ
(

1 − J
6

)
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9.7 Photoelectric effect

Two model classes are available G4LivermorePhotoElectricModel and
G4LivermorePolarizedPhotoelEctricModel.

9.7.1 Cross sections

The total photoelectric and single shell cross-sections are tabulated from
threshold to 600keV . Above 600keV EPDL97 cross sections [1] are parame-
terized as following:

σ(E) =
a1

E
+
a2

E2
+
a3

E3
+
a4

E4
+
a5

E5
. (9.35)

The accuracy of such parameterisation is better than 1%.

9.7.2 Sampling of the final state

The incident photon is absorbed and an electron is emitted.
The electron kinetic energy is the difference between the incident photon

energy and the binding energy of the electron before the interaction. The
sub-shell, from which the electron is emitted, is randomly selected according
to the relative cross-sections of all subshells, determined at the given energy.
The interaction leaves the atom in an excited state. The deexcitation of the
atom is simulated as described in section 14.1.

9.7.3 Angular distribution of the emmited photoelec-

tron

For sampling of the direction of the emmited photoelectron by default the an-
gular generator G4SauterGavrilaAngularDistribution is used. The algorithm
is described in 5.2.

For polarized model alternative angular generator is applied
G4PhotoElectricAngularGeneratorPolarized. This model models the double
differential cross section (for angles θ and φ) and thus it is capable of account
for polarization of the incident photon. The developed generator was based
in the research of Sauter in 1931[2]. The Sauter’s formula was recalculated
by Gavrila in 1959 for the K-shell [3] and in 1961 for the L-shells [4]. These
new double differential formulas have some limitations, αZ<<1 and have a
range between 0.1< β <0.99 c.
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The double differential photoeffect for K–shell can be written as [3]:

dσ

dω
(θ, φ) =

4

m2
α6Z5 β3(1 − β2)3

[1 − (1 − β2)1/2]

(

F

(

1 − παZ

β

)

+ παZG

)

(9.36)

where

F =
sin2 θ cos2 φ

(1 − β cos θ)4
− 1 − (1 − β2)1/2

2(1 − β2)

sin2 θ cos2 φ

(1 − β cos θ)3

+

[

1 − (1 − β2)1/2
]2

4(1 − β2)3/2

sin2 θ

(1 − β cos θ)3

G =
[1 − (1 − β2)1/2]1/2

27/2β2(1 − β cos θ)5/2

[

4β2

(1 − β2)1/2

sin2 θ cos2 φ

1 − β cos θ
+

4β

1 − β2
cos θ cos2 φ−

− 4
1 − (1 − β2)1/2

1 − β2
(1 − cos2 φ) − β2 1 − (1 − β2)1/2

1 − β2

sin2 θ

1 − β cos θ
−

+ 4β21 − (1 − β2)1/2

(1 − β2)3/2
− 4β

[

1 − (1 − β2)1/2
]2

(1 − β2)3/2

]

+
1 − (1 − β2)1/2

4β2(1 − β cos θ)2

[

β

1 − β2
− 2

1 − β2
cos θ cos2 φ+

1 − (1 − β2)1/2

(1 − β2)3/2
cos θ

− β
1 − (1 − β2)1/2

(1 − β2)3/2

]

where β is the electron velocity, α is the fine–structure constant, Z is the
atomic number of the material and θ, φ are the emission angles with respect
to the electron initial direction.

The double differential photoeffect distribution for L1–shell is the same
as for K–shell despising a constant [4]:

B = ξ
1

8
(9.37)

where ξ is equal to 1 when working with unscreened Coulomb wave functions
as it is done in this development.

Since the polarized Gavrila cross–section is a 2–dimensional non–factorized
distribution an acceptance–rejection technique was the adopted [5]. For the
Gravrila distribution, two functions were defined g1(φ) and g2(θ):

g1(φ) = a (9.38)

g2(θ) =
θ

1 + cθ2
(9.39)
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such that:

Ag1(φ)g2(θ) ≥
d2σ

dφdθ
(9.40)

where A is a global constant. The method used to calculate the distribution
is the same as the one used in Low Energy 2BN Bremsstrahlung Generator,
being the difference g1(φ) = a.

9.7.4 Status of the document

30.09.1999 created by Alessandra Forti
07.02.2000 modified by Véronique Lefébure
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9.8 Electron ionisation

The class G4LivermoreIonisationModel calculates the continuous energy loss
due to electron ionisation and simulates δ-ray production by electrons. The
delta-electron production threshold for a given material, Tc, is used to sep-
arate the continuous and the discrete parts of the process. The energy loss
of an electron with the incident energy, T , is expressed via the sum over all
atomic shells, s, and the integral over the energy, t, of delta-electrons:

dE

dx
=
∑

s

(

σs(T )

∫ Tc
0.1eV

tdσ
dt
dt

∫ Tmax
0.1eV

dσ
dt
dt

)

, (9.41)

where Tmax = 0.5T is the maximum energy transfered to a δ-electron, σs(T )
is the total cross-section for the shell, s, at a given incident kinetic energy,
T , and 0.1eV is the low energy limit of the EEDL data. The δ-electron
production cross-section is a complimentary function:

σ(T ) =
∑

s

(

σs(T )

∫ Tmax
Tc

dσ
dt
dt

∫ Tmax
0.1eV

dσ
dt
dt

)

. (9.42)

The partial sub-shell cross-sections, σs, are obtained from an interpolation
of the evaluated cross-section data in the EEDL library [1], according to the
formula (9.1) in Section 9.1.4.

The probability of emission of a δ-electron with kinetic energy, t, from
a sub-shell, s, of binding energy, Bs, as the result of the interaction of an
incoming electron with kinetic energy, T , is described by:

dσ

dt
=
P (x)

x2
, withx =

t+Bs

T +Bs
, (9.43)

where the parameter x is varied from xmin = (0.1eV +Bs)/(T + Bs) to 0.5.
The function, P (x), is parametrised differently in 3 regions of x: from xmin

to x1 the linear interpolation with linear scale of 4 points is used; from x1 to
x2 the linear interpolation with logarithmic scale of 16 points is used; from
x2 to 0.5 the following interpolation is applied:

P (x) = 1 − gx+ (1 − g)x2 +
x2

1 − x
(

1

1 − x
− g) + A ∗ (0.5 − x)/x, (9.44)

where A is a fit coefficient, g is expressed via the gamma factor of the in-
coming electron:

g = (2γ − 1)/γ2. (9.45)
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For the high energy case (x >> 1) the formula (9.44) is transformed to the
Möller electron-electron scattering formula [2, 3].

The value of the coefficient, A, for each element is obtained as a result
of the fit on the spectrum from the EEDL data for those energies which
are available in the database. The values of x1 and x2 are chosen for each
atomic shell according to the spectrum of δ-electrons in this shell. Note that
x1 corresponds to the maximum of the spectrum, if the maximum does not
coincide with xmin. The dependence of all 24 parameters on the incident
energy, T , is evaluated from a logarithmic interpolation (9.1).

The sampling of the final state proceeds in three steps. First a shell is
randomly selected, then the energy of the delta-electron is sampled, finally
the angle of emission of the scattered electron and of the δ-ray is determined
by energy-momentum conservation taken into account electron motion on
the atomic orbit.

The interaction leaves the atom in an excited state. The deexcitation of
the atom is simulated as described in section 14.1. Sampling of the excitations
is carried out for both the continuous and the discrete parts of the process.
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9.9 Bremsstrahlung

The class G4LivermoreBremsstrahlungModel calculates the continuous en-
ergy loss due to low energy gamma emission and simulates the gamma pro-
duction by electrons. The gamma production threshold for a given material
ωc is used to separate the continuous and the discrete parts of the process.
The energy loss of an electron with the incident energy T are expressed via
the integrand over energy of the gammas:

dE

dx
= σ(T )

∫ ωc
0.1eV

t dσ
dω
dω

∫ T

0.1eV
dσ
dω
dω

, (9.46)

where σ(T ) is the total cross-section at a given incident kinetic energy, T ,
0.1eV is the low energy limit of the EEDL data. The production cross-section
is a complimentary function:

σ = σ(T )

∫ T

ωc
dσ
dω
dω

∫ T

0.1eV
dσ
dω
dω
. (9.47)

The total cross-section, σs, is obtained from an interpolation of the eval-
uated cross-section data in the EEDL library [1], according to the formula
(9.1) in Section 9.1.4.

The EEDL data [1] of total cross-sections are parametrised [2] according
to (9.1). The probability of the emission of a photon with energy, ω, consid-
ering an electron of incident kinetic energy, T , is generated according to the
formula:

dσ

dω
=
F (x)

x
, withx =

ω

T
. (9.48)

The function, F (x), describing energy spectra of the outcoming photons
is taken from the EEDL library. For each element 15 points in x from 0.01
to 1 are used for the linear interpolation of this function. The function F
is normalised by the condition F (0.01) = 1. The energy distributions of the
emitted photons available in the EEDL library are for only a few incident
electron energies (about 10 energy points between 10 eV and 100 GeV). For
other energies a logarithmic interpolation formula (9.1) is used to obtain
values for the function, F (x). For high energies, the spectral function is very
close to:

F (x) = 1 − x+ 0.75x2. (9.49)
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9.9.1 Bremsstrahlung angular distributions

The angular distribution of the emitted photons with respect to the inci-
dent electron can be sampled according to three alternative generators de-
scribed below. The direction of the outcoming electron is determined from
the energy-momentum balance. This generators are currently implemented
in G4ModifiedTsai, G4Generator2BS and G4Generator2BN classes.

G4ModifiedTsai

The angular distribution of the emitted photons is obtained from a simplified
[3] formula based on the Tsai cross-section [4], which is expected to become
isotropic in the low energy limit.

G4Generator2BS

In G4Generator2BS generator, the angular distribution of the emitted pho-
tons is obtained from the 2BS Koch and Motz bremsstrahlung double differ-
ential cross-section [5]:

dσk,θ =
4Z2r2

0

137

dk

k
ydy

{

16y2E

(y2 + 1)4E0
−

(E0 + E)2

(y2 + 1)2E2
0

+

[

E2
0 + E2

(y2 + 1)2E2
0

− 4y2E

(y2 + 1)4E0

]

lnM(y)

}

where k the photon energy, θ the emission angle, E0 and E are the initial
and final electron energy in units of mec

2, r0 is the classical electron radius
and Z the atomic number of the material. y and M(y) are defined as:

y = E0θ

1

M(y)
=

(

k

2E0E

)2

+

(

Z1/3

111(y2 + 1)

)2

The adopted sampling algorithm is based on the sampling scheme devel-
oped by A. F. Bielajew et al. [6], and latter implemented in EGS4. In this
sampling algorithm only the angular part of 2BS is used, with the emitted
photon energy, k, determined by GEANT4

(

dσ
dk

)

differential cross-section.

G4Generator2BN

The angular distribution of the emitted photons is obtained from the 2BN
Koch and Motz bremsstrahlung double differential cross-section [5] that can
be written as:
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dσk,θ =
Z2r2

0

8π137

dk

k

p

p0
dΩk

{

8 sin2 θ(2E2
0 − 1)

p2
0∆

4
0

−

2(5E2
0 + 2EE0 + 3)

p2
0∆

2
0

− 2(p2
0 − k2)

Q2∆0

+
4E

p2
2∆0

+
L

pp0
[

4E0 sin2 θ(3k − p2
0E)

p2
0∆

4
+

4E2
0(E

2
0 + E2)

p2
0∆

2
0

+

2 − 2(E2
0 − 3EE0 + E2)

p2
0∆

2
0

+
2k(E2

0 + EE0 − 1)

p2
0∆0

]

−
(

4ǫ

p∆0

)

+

(

ǫQ

pQ

)[

4

∆2
0

− 6k

∆0

− 2k(p2
0 − k2)

Q2∆0

]}

in which:

L = ln

[

EE0 − 1 + pp0

EE0 − 1 − pp0

]

∆0 = E0 − p0 cos θ

Q2 = p2
0 + k2 − 2p0k cos θ

ǫ = ln

[

E + p

E − p

]

ǫQ = ln

[

Q+ p

Q− p

]

where k is the photon energy, θ the emission angle and (E0, p0) and (E, p) are
the total (energy, momentum) of the electron before and after the radiative
emission, all in units of mec

2.
Since the 2BN cross–section is a 2-dimensional non-factorized distribution an
acceptance-rejection technique was the adopted. For the 2BN distribution,
two functions g1(k) and g2(θ) were defined:

g1(k) = k−b g2(θ) =
θ

1 + cθ2
(9.50)

such that:

Ag1(k)g2(θ) ≥
dσ

dkdθ
(9.51)

where A is a global constant to be completed. Both functions have an analyt-
ical integral G and an analytical inverse G−1. The b parameter of g1(k) was
empirically tuned and set to 1.2. For positive θ values, g2(θ) has a maximum
at 1√

(c)
. c parameter controls the function global shape and it was used to

tune g2(θ) according to the electron kinetic energy.
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To generate photon energy k according to g1 and θ according to g2 the inverse-
transform method was used. The integration of these functions gives

G1 = C1

∫ kmax

kmin

k′−bdk′ = C1
k1−b − k1−b

min

1 − b
(9.52)

G2 = C2

∫ θ

0

θ′

1 + cθ′2
dθ′ = C2

log(1 + cθ2)

2c
(9.53)

where C1 and C2 are two global constants chosen to normalize the integral
in the overall range to the unit. The photon momentum k will range from
a minimum cut value kmin (required to avoid infrared divergence) to a max-
imum value equal to the electron kinetic energy Ek, while the polar angle
ranges from 0 to π, resulting for C1 and C2:

C1 =
1 − b

E1−b
k

C2 =
2c

log(1 + cπ2)
(9.54)

k and θ are then sampled according to:

k =

[

1 − b

C1
ξ1 + k1−b

min

]

θ =

√

√

√

√

exp
(

2cξ2
C1

)

2c
(9.55)

where ξ1 and ξ2 are uniformly sampled in the interval (0,1). The event is
accepted if:

uAg1(k)g2(θ) ≤
dσ

dkdθ
(9.56)

where u is a random number with uniform distribution in (0,1). The A and
c parameters were computed in a logarithmic grid, ranging from 1 keV to 1.5
MeV with 100 points per decade. Since the g2(θ) function has a maximum
at θ = 1√

c
, the c parameter was computed using the relation c = 1

θmax
. At the

point (kmin, θmax) where kmin is the k cut value, the double differential cross-
section has its maximum value, since it is monotonically decreasing in k and
thus the global normalization parameter A is estimated from the relation:

Ag1(kmin)g2(θmax) =

(

d2σ

dkdθ

)

max

(9.57)

where g1(kmin)g2(θmax) =
k−b
min

2
√

c
. Since A and c can only be retrieved for

a fixed number of electron kinetic energies there exists the possibility that

Ag1(kmin)g2(θmax) ≤
(

d2σ
dkdθ

)

max
for a given Ek. This is a small violation that
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can be corrected introducing an additional multiplicative factor to the A pa-
rameter, which was empirically determined to be 1.04 for the entire energy
range.

Comparisons between Tsai, 2BS and 2BN generators

The currently available generators can be used according to the user required
precision and timing requirements. Regarding the energy range, validation
results indicate that for lower energies (≤ 100 keV) there is a significant
deviation on the most probable emission angle between Tsai/2BS generators
and the 2BN generator - Figure 9.1. The 2BN generator maintains however
a good agreement with Kissel data [7], derived from the work of Tseng and
co-workers [8], and it should be used for energies between 1 keV and 100 keV
[9]. As the electron kinetic energy increases, the different distributions tend
to overlap and all generators present a good agreement with Kissel data.

Figure 9.1: Comparison of polar angle distribution of bremsstrahlung pho-
tons (k/T = 0.5) for 10 keV (left) and 100 keV (middle) and 500 keV (right)
electrons in silver, obtained with Tsai, 2BS and 2BN generator

In figure 9.2 the sampling efficiency for the different generators are presented.
The sampling generation efficiency was defined as the ratio between the num-
ber of generated events and the total number of trials. As energies increases
the sampling efficiency of the 2BN algorithm decreases from 0.65 at 1 keV
electron kinetic energy down to almost 0.35 at 1 MeV. For energies up to
10 keV the 2BN sampling efficiency is superior or equivalent to the one of
the 2BS generator. These results are an indication that precision simula-
tion of low energy bremsstrahlung can be obtained with little performance
degradation. For energies above 500 keV, Tsai generator can be used, retain-
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ing a good physics accuracy and a sampling efficiency superior to the 2BS
generator.

Figure 9.2: Sampling efficiency for Tsai generator, 2BS and 2BN Koch and
Motz generators.

9.9.2 Status of the document

30.09.1999 created by Alessandra Forti
07.02.2000 modified by Véronique Lefébure
08.03.2000 reviewed by Petteri Nieminen and Maria Grazia Pia
05.12.2001 modified by Vladimir Ivanchenko
13.05.2002 modified by Vladimir Ivanchenko
24.11.2003 modified by Andreia Trindade, Pedro Rodrigues and Luis Peralta

Bibliography

[1] “Geant4 Low Energy Electromagnetic Models for Electrons and Pho-
tons”, J.Apostolakis et al., CERN-OPEN-99-034(1999), INFN/AE-
99/18(1999)

178



[2] “Tables and Graphs of Electron-Interaction Cross-Sections from 10 eV
to 100 GeV Derived from the LLNL Evaluated Electron Data Library
(EEDL), Z=1-100” S.T.Perkins, D.E.Cullen, S.M.Seltzer, UCRL-50400
Vol.31

[3] “GEANT, Detector Description and Simulation Tool”, CERN Applica-
tion Software Group, CERN Program Library Long Writeup W5013

[4] “Pair production and bremsstrahlung of charged leptons”, Y. Tsai, Rev.
Mod. Phys., Vol.46, 815(1974), Vol.49, 421(1977)

[5] “Bremsstrahlung Cross-Section Formulas and Related Data”, H. W.
Koch and J. W. Motz, Rev. Mod. Phys., Vol.31, 920(1959)

[6] “Improved bremsstrahlung photon angular sampling in the EGS4
code system”, A. F. Bielajew, R. Mohan and C.-S. Chui, Report
NRCC/PIRS-0203 (1989)

[7] “Bremsstrahlung from electron collisions with neutral atoms”, L. Kissel,
C. A. Quarls and R. H. Pratt, At. Data Nucl. Data Tables, Vol. 28,
382(1983)

[8] “Electron bremsstrahlung angular distributions in the 1-500 keV energy
range”, H. K. Tseng, R. H. Pratt and C. M. Lee , Phys. Rev. A, Vol.
19, 187(1979)

[9] “GEANT4 Applications and Developments for Medical Physics Exper-
iments”, P. Rodrigues et al. IEEE 2003 NSS/MIC Conference Record

179



Chapter 10

Low Energy Penelope
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10.1 Penelope physics

10.1.1 Introduction

A new set of physics processes for photons, electrons and positrons is im-
plemented in Geant4: it includes Compton scattering, photoelectric effect,
Rayleigh scattering, gamma conversion, bremsstrahlung, ionization (to be
released) and positron annihilation (to be released). These processes are the
Geant4 implementation of the physics models developed for the PENELOPE
code (PENetration and Energy LOss of Positrons and Electrons), version
2001, that are described in detail in Ref. [1]. The Penelope models have
been specifically developed for Monte Carlo simulation and great care was
given to the low energy description (i.e. atomic effects, etc.). Hence, these
implementations provide reliable results for energies down to a few hundred
eV and can be used up to ∼1 GeV [1, 2]. For this reason, they may be
used in Geant4 as an alternative to the Low Energy processes. For the same
physics processes, the user now has more alternative descriptions from which
to choose, including the cross section calculation and the final state sampling.

10.1.2 Compton scattering

Total cross section

The total cross section of the Compton scattering process is determined from
an analytical parameterization. For γ energy E greater than 5 MeV, the usual
Klein-Nishina formula is used for σ(E). For E < 5 MeV a more accurate
parameterization is used, which takes into account atomic binding effects
and Doppler broadening [3]:

σ(E) = 2π

∫ 1

−1

r2
e

2

E2
C

E2
(
EC

E
+

E

EC
− sin2 θ) ·

∑

shells

fiΘ(E − Ui)ni(p
max
z ) d(cos θ) (10.1)

where:
re = classical radius of the electron;
me = mass of the electron;
θ = scattering angle;
EC = Compton energy

=
E

1 + E
mec2

(1 − cos θ)
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fi = number of electrons in the i-th atomic shell;
Ui = ionisation energy of the i-th atomic shell;
Θ = Heaviside step function;
pmax

z = highest possible value of pz (projection of the initial momentum of
the electron in the direction of the scattering angle)

=
E(E − Ui)(1 − cos θ) −mec

2Ui

c
√

2E(E − Ui)(1 − cos θ) + U2
i

.

Finally,
ni(x) =

1
2
e[

1
2
−( 1

2
−
√

2Ji0x)2] if x < 0

1 − 1
2
e[

1
2
−( 1

2
+
√

2Ji0x)2] if x > 0

(10.2)

where Ji0 is the value of the pz-distribution profile Ji(pz) for the i-th atomic
shell calculated in pz = 0. The values of Ji0 for the different shells of the
different elements are tabulated from the Hartree-Fock atomic orbitals of
Ref. [4].
The integration of Eq.(10.1) is performed numerically using the 20-point
Gaussian method. For this reason, the initialization of the Penelope Compton
process is somewhat slower than the Low Energy process.

Sampling of the final state

The polar deflection cos θ is sampled from the probability density function

P (cos θ) =
r2
e

2

E2
C

E2

(EC

E
+

E

EC
− sin2 θ

)

∑

shells

fiΘ(E − Ui)ni(p
max
z ) (10.3)

(see Ref. [1] for details on the sampling algorithm). Once the direction of
the emerging photon has been set, the active electron shell i is selected with
relative probability equal to ZiΘ(E − Ui)ni[p

max
z (E, θ)]. A random value of

pz is generated from the analytical Compton profile [4]. The energy of the
emerging photon is

E ′ =
Eτ

1 − τt

[

(1 − τt cos θ) +
pz

|pz|
√

(1 − τt cos θ)2 − (1 − tτ 2)(1 − t)
]

,

(10.4)
where

t =
( pz

mec

)2

and τ =
EC

E
. (10.5)

The azimuthal scattering angle φ of the photon is sampled uniformly in
the interval (0,2π). It is assumed that the Compton electron is emitted with
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energy Ee = E−E ′−Ui, with polar angle θe and azimuthal angle φe = φ+π,
relative to the direction of the incident photon. In this case cos θe is given by

cos θe =
E −E ′ cos θ√

E2 + E ′2 − 2EE ′ cos θ
. (10.6)

Since the active electron shell is known, characteristic x-rays and electrons
emitted in the de-excitation of the ionized atom can also be followed. The de-
excitation is simulated as described in section 14.1. For further details see [1].

10.1.3 Rayleigh scattering

Total cross section

The total cross section of the Rayleigh scattering process is determined from
an analytical parameterization. The atomic cross section for coherent scat-
tering is given approximately by [5]

σ(E) = πr2
e

∫ 1

−1

1 + cos2 θ

2
[F (q, Z)]2 d cos θ, (10.7)

where F (q, Z) is the atomic form factor, Z is the atomic number and q is the
magnitude of the momentum transfer, i.e.

q = 2
E

c
sin
(θ

2

)

. (10.8)

In the numerical calculation the following analytical approximations are used
for the form factor:

F (q, Z) = f(x, Z) =

Z 1+a1x2+a2x3+a3x4

(1+a4x2+a5x4)2
or

max[f(x, Z), FK(x, Z)] if Z > 10 and f(x, Z) < 2
(10.9)

where

FK(x, Z) =
sin(2b arctanQ)

bQ(1 +Q2)b
, (10.10)

with

x = 20.6074
q

mec
, Q =

q

2meca
, b =

√
1 − a2, a = α

(

Z − 5

16

)

, (10.11)

where α is the fine-structure constant. The function FK(x, Z) is the contri-
bution to the atomic form factor due to the two K-shell electrons (see [6]).

183



The parameters of expression f(x, Z) have been determined in Ref. [6] for
Z=1 to 92 by numerically fitting the atomic form factors tabulated in Ref.
[7]. The integration of Eq.(10.7) is performed numerically using the 20-point
Gaussian method. For this reason the initialization of the Penelope Rayleigh
process is somewhat slower than the Low Energy process.

Sampling of the final state

The angular deflection cos θ of the scattered photon is sampled from the
probability distribution function

P (cos θ) =
1 + cos2 θ

2
[F (q, Z)]2. (10.12)

For details on the sampling algorithm (which is quite heavy from the com-
putational point of view) see Ref. [1]. The azimuthal scattering angle φ of
the photon is sampled uniformly in the interval (0,2π).

10.1.4 Gamma conversion

Total cross section

The total cross section of the γ conversion process is determined from the
data [8], as described in section 9.1.4.

Sampling of the final state

The energies E− and E+ of the secondary electron and positron are sampled
using the Bethe-Heitler cross section with the Coulomb correction, using the
semiempirical model of Ref. [6]. If

ǫ =
E− +mec

2

E
(10.13)

is the fraction of the γ energy E which is taken away from the electron,

κ =
E

mec2
and a = αZ, (10.14)

the differential cross section, which includes a low-energy correction and a
high-energy radiative correction, is

dσ

dǫ
= r2

ea(Z + η)Cr
2

3

[

2
(1

2
− ǫ
)2

φ1(ǫ) + φ2(ǫ)
]

, (10.15)
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where:

φ1(ǫ) =
7

3
− 2 ln(1 + b2) − 6b arctan(b−1)

−b2[4 − 4b arctan(b−1) − 3 ln(1 + b−2)]

+4 ln(Rmec/~) − 4fC(Z) + F0(κ, Z) (10.16)

and

φ2(ǫ) =
11

6
− 2 ln(1 + b2) − 3b arctan(b−1)

+
1

2
b2[4 − 4b arctan(b−1) − 3 ln(1 + b−2)]

+4 ln(Rmec/~) − 4fC(Z) + F0(κ, Z), (10.17)

with

b =
Rmec

~

1

2κ

1

ǫ(1 − ǫ)
. (10.18)

In this case R is the screening radius for the atom Z (tabulated in [10] for
Z=1 to 92) and η is the contribution of pair production in the electron field
(rather than in the nuclear field). The parameter η is approximated as

η = η∞(1 − e−v), (10.19)

where

v = (0.2840 − 0.1909a) ln(4/κ) + (0.1095 + 0.2206a) ln2(4/κ)

+(0.02888 − 0.04269a) ln3(4/κ)

+(0.002527 + 0.002623) ln4(4/κ) (10.20)

and η∞ is the contribution for the atom Z in the high-energy limit and is
tabulated for Z=1 to 92 in Ref. [10]. In the Eq.(10.15), the function fC(Z)
is the high-energy Coulomb correction of Ref. [9], given by

fC(Z) = a2[(1 + a2)−1 + 0.202059 − 0.03693a2 + 0.00835a4

−0.00201a6 + 0.00049a8 − 0.00012a10 + 0.00003a12]; (10.21)

Cr = 1.0093 is the high-energy limit of Mork and Olsen’s radiative correction
(see Ref. [10]); F0(κ, Z) is a Coulomb-like correction function, which has been
analytically approximated as [1]

F0(κ, Z) = (−0.1774 − 12.10a+ 11.18a2)(2/κ)1/2

+(8.523 + 73.26a− 44.41a2)(2/κ)

−(13.52 + 121.1a− 96.41a2)(2/κ)3/2

+(8.946 + 62.05a− 63.41a2)(2/κ)2. (10.22)
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The kinetic energy E+ of the secondary positron is obtained as

E+ = E − E− − 2mec
2. (10.23)

The polar angles θ− and θ+ of the directions of movement of the electron and
the positron, relative to the direction of the incident photon, are sampled
from the leading term of the expression obtained from high-energy theory
(see Ref. [11])

p(cos θ±) = a(1 − β± cos θ±)−2, (10.24)

where a is the a normalization constant and β± is the particle velocity in
units of the speed of light. As the directions of the produced particles and
of the incident photon are not necessarily coplanar, the azimuthal angles φ−
and φ+ of the electron and of the positron are sampled independently and
uniformly in the interval (0,2π).

10.1.5 Photoelectric effect

Total cross section

The total photoelectric cross section at a given photon energy E is calculated
from the data [12], as described in section 9.1.4.

Sampling of the final state

The incident photon is absorbed and one electron is emitted. The direction of
the electron is sampled according to the Sauter distribution [13]. Introducing
the variable ν = 1 − cos θe, the angular distribution can be expressed as

p(ν) = (2 − ν)
[ 1

A + ν
+

1

2
βγ(γ − 1)(γ − 2)

] ν

(A + ν)3
, (10.25)

where

γ = 1 +
Ee

mec2
, A =

1

β
− 1, (10.26)

Ee is the electron energy, me its rest mass and β its velocity in units of the
speed of light c. Though the Sauter distribution, strictly speaking, is ad-
equate only for ionisation of the K-shell by high-energy photons, in many
practical simulations it does not introduce appreciable errors in the descrip-
tion of any photoionisation event, irrespective of the atomic shell or of the
photon energy.
The subshell from which the electron is emitted is randomly selected accord-
ing to the relative cross sections of subshells, determined at the energy E
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by interpolation of the data of Ref. [11]. The electron kinetic energy is the
difference between the incident photon energy and the binding energy of the
electron before the interaction in the sampled shell. The interaction leaves
the atom in an excited state; the subsequent de-excitation is simulated as
described in section 14.1.

10.1.6 Bremsstrahlung

Introduction

The class G4PenelopeBremsstrahlung calculates the continuous energy loss
due to soft γ emission and simulates the photon production by electrons and
positrons. As usual, the gamma production threshold Tc for a given material
is used to separate the continuous and the discrete parts of the process.

Electrons

The total cross sections are calculated from the data [15], as described in
sections 9.1.4 and 9.9.
The energy distribution dσ

dW
(E), i.e. the probability of the emission of a

photon with energy W given an incident electron of kinetic energy E, is
generated according to the formula

dσ

dW
(E) =

F (κ)

κ
, κ =

W

E
. (10.27)

The functions F (κ) describing the energy spectra of the outgoing photons are
taken from Ref. [14]. For each element Z from 1 to 92, 32 points in κ, ranging
from 10−12 to 1, are used for the linear interpolation of this function. F (κ)
is normalized using the condition F (10−12) = 1. The energy distribution
of the emitted photons is available in the library [14] for 57 energies of the
incident electron between 1 keV and 100 GeV. For other primary energies,
logarithmic interpolation is used to obtain the values of the function F (κ).
The direction of the emitted bremsstrahlung photon is determined by the
polar angle θ and the azimuthal angle φ. For isotropic media, with randomly
oriented atoms, the bremsstrahlung differential cross section is independent
of φ and can be expressed as

d2σ

dWd cos θ
=

dσ

dW
p(Z,E, κ; cos θ). (10.28)

Numerical values of the “shape function” p(Z,E, κ; cos θ), calculated by
partial-wave methods, have been published in Ref. [16] for the following
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benchmark cases: Z= 2, 8, 13, 47, 79 and 92; E= 1, 5, 10, 50, 100 and 500
keV; κ= 0, 0.6, 0.8 and 0.95. It was found in Ref. [1] that the benchmark
partial-wave shape function of Ref. [16] can be closely approximated by the
analytical form (obtained in the Lorentz-dipole approximation)

p(cos θ) = A
3

8

[

1 +
( cos θ − β ′

1 − β ′ cos θ

)2] 1 − β
′2

(1 − β ′ cos θ)2

+(1 −A)
3

4

[

1 −
( cos θ − β ′

1 − β ′ cos θ
m
)2] 1 − β

′2

(1 − β ′ cos θ)2
, (10.29)

with β ′ = β(1+B), if one considers A and B as adjustable parameters. The
parameters A and B have been determined, by least squares fitting, for the
144 combinations of atomic numbers, electron energies and reduced photon
energies corresponding to the benchmark shape functions tabulated in [16].
The quantities ln(AZβ) and Bβ vary smoothly with Z, β and κ and can
be obtained by cubic spline interpolation of their values for the benchmark
cases. This permits the fast evaluation of the shape function p(Z,E, κ; cos θ)
for any combination of Z, β and κ.
The stopping power dE

dx
due to soft bremsstrahlung is calculated by interpo-

lating in E and κ the numerical data of scaled cross sections of Ref. [17]. The
energy and the direction of the outgoing electron are determined by using
energy-momentum balance.

Positrons

The radiative differential cross section dσ+

dW
(E) for positrons reduces to that

for electrons in the high-energy limit, but is smaller for intermediate and low
energies. Owing to the lack of more accurate calculations, the differential
cross section for positrons is obtained by multiplying the electron differential
cross section dσ−

dW
(E) by a κ−indendent factor, i.e.

dσ+

dW
= Fp(Z,E)

dσ−

dW
. (10.30)

The factor Fp(Z,E) is set equal to the ratio of the radiative stopping powers
for positrons and electrons, which has been calculated in Ref. [18]. For the
actual calculation, the following analytical approximation is used:

Fp(Z,E) = 1 − exp(−1.2359 · 10−1t+ 6.1274 · 10−2t2 − 3.1516 · 10−2t3

+7.7446 · 10−3t4 − 1.0595 · 10−3t5 + 7.0568 · 10−5t6

−1.8080 · 10−6t7),(10.31)
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where

t = ln
(

1 +
106

Z2

E

mec2

)

. (10.32)

Because the factor Fp(Z,E) is independent on κ, the energy distribution of
the secondary γ’s has the same shape as electron bremsstrahlung. Similarly,
owing to the lack of numerical data for positrons, it is assumed that the shape
of the angular distribution p(Z,E, κ; cos θ) of the bremsstrahlung photons for
positrons is the same as for the electrons.
The energy and direction of the outgoing positron are determined from
energy-momentum balance.

10.1.7 Ionisation

The G4PenelopeIonisation class calculates the continuous energy loss due
to electron and positron ionisation and simulates the δ-ray production by
electrons and positrons. The electron production threshold Tc for a given
material is used to separate the continuous and the discrete parts of the
process.
The simulation of inelastic collisions of electrons and positrons is performed
on the basis of a Generalized Oscillation Strength (GOS) model (see Ref. [1]
for a complete description). It is assumed that GOS splits into contributions
from the different atomic electron shells.

Electrons

The total cross section σ−(E) for the inelastic collision of electrons of energy
E is calculated analytically. It can be split into contributions from distant
longitudinal, distant transverse and close interactions,

σ−(E) = σdis,l + σdis,t + σ−
clo. (10.33)

The contributions from distant longitudinal and transverse interactions are

σdis,l =
2πe4

mev2

∑

shells

fk
1

Wk

ln
( Wk

Qmin
k

Qmin
k + 2mec

2

Wk + 2mec2

)

Θ(E −Wk) (10.34)

and

σdis,t =
2πe4

mev2

∑

shells

fk
1

Wk

[

ln
( 1

1 − β2

)

− β2 − δF

]

Θ(E −Wk) (10.35)

respectively, where:
me = mass of the electron;
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v = velocity of the electron;
β = velocity of the electron in units of c;
fk = number of electrons in the k-th atomic shell;
Θ = Heaviside step function;
Wk = resonance energy of the k-th atomic shell oscillator;
Qmin

k = minimum kinematically allowed recoil energy for energy transfer Wk

=

√

[

√

E(E + 2mec2) −
√

(E −Wk)(E −Wk + 2mec2)
]2

+m2
ec

4 −mec
2;

δF = Fermi density effect correction, computed as described in Ref. [19].
The value of Wk is calculated from the ionisation energy Uk of the k-th

shell as Wk = 1.65 Uk. This relation is derived from the hydrogenic model,
which is valid for the innermost shells. In this model, the shell ionisation
cross sections are only roughly approximated; nevertheless the ionisation of
inner shells is a low-probability process and the approximation has a weak
effect on the global transport properties1.
The integrated cross section for close collisions is the Møller cross section

σ−
clo =

2πe4

mev2

∑

shells

fk

∫ E
2

Wk

1

W 2
F−(E,W )dW, (10.36)

where

F−(E,W ) = 1 +
( W

E −W

)2

− W

E −W
+
( E

E +mec2

)2( W

E −W
+
W 2

E2

)

.

(10.37)
The integral of Eq.(10.36) can be evaluated analytically. In the final state
there are two indistinguishable free electrons and the fastest one is considered
as the “primary”; accordingly, the maximum allowed energy transfer in close
collisions is E

2
.

The GOS model also allows evaluation of the spectrum dσ−

dW
of the energy

W lost by the primary electron as the sum of distant longitudinal, distant
transverse and close interaction contributions,

dσ−

dW
=

dσ−
clo

dW
+
dσdis,l

dW
+
dσdis,t

dW
. (10.38)

1In cases where inner-shell ionisation is directly observed, a more accurate description
of the process should be used.
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In particular,

dσdis,l

dW
=

2πe4

mev2

∑

shells

fk
1

Wk
ln
(Wk

Q−

Q− + 2mec
2

Wk + 2mec2

)

δ(W −Wk)Θ(E −Wk),

(10.39)
where

Q− =

√

[

√

E(E + 2mec2) −
√

(E −W )(E −W + 2mec2)
]2

+m2
ec

4−mec
2,

(10.40)

dσdis,t

dW
=

2πe4

mev2

∑

shells

fk
1

Wk

[

ln
( 1

1 − β2

)

− β2 − δF

]

Θ(E −Wk)δ(W −Wk) (10.41)

and
dσ−

clo

dW
=

2πe4

mev2

∑

shells

fk
1

W 2
F−(E,W )Θ(W −Wk). (10.42)

Eqs. (10.34), (10.35) and (10.36) derive respectively from the integration
in dW of Eqs. (10.39), (10.41) and (10.42) in the interval [0,Wmax], where
Wmax = E for distant interactions and Wmax = E

2
for close. The analytical

GOS model provides an accurate average description of inelastic collisions.
However, the continuous energy loss spectrum associated with single distant
excitations of a given atomic shell is approximated as a single resonance (a
δ distribution). As a consequence, the simulated energy loss spectra show
unphysical narrow peaks at energy losses that are multiples of the resonance
energies. These spurious peaks are automatically smoothed out after multiple
inelastic collisions.
The explicit expression of dσ−

dW
, Eq. (10.38), allows the analytic calculation

of the partial cross sections for soft and hard ionisation events, i.e.

σ−
soft =

∫ Tc

0

dσ−

dW
dW and σ−

hard =

∫ Wmax

Tc

dσ−

dW
dW. (10.43)

The first stage of the simulation is the selection of the active oscillator k
and the oscillator branch (distant or close).
In distant interactions with the k-th oscillator, the energy loss W of the
primary electron corresponds to the excitation energy Wk, i.e. W=Wk. If the
interaction is transverse, the angular deflection of the projectile is neglected,
i.e. cos θ=1. For longitudinal collisions, the distribution of the recoil energy

191



Q is given by

Pk(Q) =
1

Q[1+Q/(2mec2)]
if Q− < Q < Wmax

0 otherwise
(10.44)

Once the energy loss W and the recoil energy Q have been sampled, the
polar scattering angle is determined as

cos θ =
E(E + 2mec

2) + (E −W )(E −W + 2mec
2) −Q(Q+ 2mec

2)

2
√

E(E + 2mec2)(E −W )(E −W + 2mec2)
.

(10.45)
The azimuthal scattering angle φ is sampled uniformly in the interval (0,2π).
For close interactions, the distributions for the reduced energy loss κ ≡ W/E
for electrons are

P−
k (κ) =

[ 1

κ2
+

1

(1 − κ)2
− 1

κ(1 − κ)
+
( E

E +mec2

)2(

1 +
1

κ(1 − κ)

)]

Θ(κ− κc)Θ(
1

2
− κ)(10.46)

with κc = max(Wk, Tc)/E. The maximum allowed value of κ is 1/2, consis-
tent with the indistinguishability of the electrons in the final state. After the
sampling of the energy loss W = κE, the polar scattering angle θ is obtained
as

cos2 θ =
E −W

E

E + 2mec
2

E −W + 2mec2
. (10.47)

The azimuthal scattering angle φ is sampled uniformly in the interval (0,2π).
According to the GOS model, each oscillator Wk corresponds to an atomic
shell with fk electrons and ionisation energy Uk. In the case of ionisation
of an inner shell i (K or L), a secondary electron (δ-ray) is emitted with
energy Es = W − Ui and the residual ion is left with a vacancy in the shell
(which is then filled with the emission of fluorescence x-rays and/or Auger
electrons). In the case of ionisation of outer shells, the simulated δ-ray is
emitted with kinetic energy Es = W and the target atom is assumed to
remain in its ground state. The polar angle of emission of the secondary
electron is calculated as

cos2 θs =
W 2/β2

Q(Q+ 2mec2)

[

1 +
Q(Q+ 2mec

2) −W 2

2W (E +mec2)

]2

(10.48)

(for close collisions Q = W ), while the azimuthal angle is φs = φ + π. In
this model, the Doppler effects on the angular distribution of the δ rays are
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neglected.
The stopping power due to soft interactions of electrons, which is used for the
computation of the continuous part of the process, is analytically calculated
as

S−
in = N

∫ Tc

0

W
dσ−

dW
dW (10.49)

from the expression (10.38), where N is the number of scattering centers
(atoms or molecules) per unit volume.

Positrons

The total cross section σ+(E) for the inelastic collision of positrons of energy
E is calculated analytically. As in the case of electrons, it can be split into
contributions from distant longitudinal, distant transverse and close interac-
tions,

σ+(E) = σdis,l + σdis,t + σ+
clo. (10.50)

The contributions from distant longitudinal and transverse interactions are
the same as for electrons, Eq. (10.34) and (10.35), while the integrated cross
section for close collisions is the Bhabha cross section

σ+
clo =

2πe4

mev2

∑

shells

fk

∫ E

Wk

1

W 2
F+(E,W )dW, (10.51)

where

F+(E,W ) = 1 − b1
W

E
+ b2

W 2

E2
− b3

W 3

E3
+ b4

W 4

E4
; (10.52)

the Bhabha factors are

b1 =
(γ − 1

γ

)2 2(γ + 1)2 − 1

γ2 − 1
b2 =

(γ − 1

γ

)2 3(γ + 1)2 + 1

(γ + 1)2
,

b3 =
(γ − 1

γ

)2 2(γ − 1)γ

(γ + 1)2
, b4 =

(γ − 1

γ

)2 (γ − 1)2

(γ + 1)2
, (10.53)

(10.54)

and γ is the Lorentz factor of the positron. The integral of Eq. (10.51) can
be evaluated analytically. The particles in the final state are not undistin-
guishable so the maximum energy transfer Wmax in close collisions is E.
As for electrons, the GOS model allows the evaluation of the spectrum dσ+

dW
of

193



the energy W lost by the primary positron as the sum of distant longitudinal,
distant transverse and close interaction contributions,

dσ+

dW
=

dσ+
clo

dW
+
dσdis,l

dW
+
dσdis,t

dW
, (10.55)

where the distant terms
dσdis,l

dW
and

dσdis,t
dW

are those from Eqs. (10.39) and
(10.41), while the close contribution is

dσ+
clo

dW
=

2πe4

mev2

∑

shells

fk
1

W 2
F+(E,W )Θ(W −Wk). (10.56)

Also in this case, the explicit expression of dσ+

dW
, Eq. (10.55), allows an

analytic calculation of the partial cross sections for soft and hard ionisation
events, i.e.

σ+
soft =

∫ Tc

0

dσ+

dW
dW and σ+

hard =

∫ E

Tc

dσ+

dW
dW. (10.57)

The sampling of the final state in the case of distant interactions (transverse
or longitudinal) is performed in the same way as for primary electrons, see
section 10.1.7. For close positron interactions with the k-th oscillator, the
distribution for the reduced energy loss κ ≡W/E is

P+
k (κ) =

[ 1

κ2
− b1
κ

+ b2 − b3κ+ b4κ
2
]

Θ(κ− κc)Θ(1 − κ) (10.58)

with κc = max(Wk, Tc)/E. In this case, the maximum allowed reduced
energy loss κ is 1. After sampling the energy loss W = κE, the polar angle
θ and the azimuthal angle φ are obtained using the equations introduced for
electrons in section 10.1.7. Similarly, the generation of δ rays is performed
in the same way as for electrons.
Finally, the stopping power due to soft interactions of positrons, which is
used for the computation of the continuous part of the process, is analytically
calculated as

S+
in = N

∫ Tc

0

W
dσ+

dW
dW (10.59)

from the expression (10.55), where N is the number of scattering centers per
unit volume.
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10.1.8 Positron Annihilation

Total Cross Section

The total cross section (per target electron) for the annihilation of a positron
of energy E into two photons is evaluated from the analytical formula [20, 21]

σ(E) =
πr2

e

(γ + 1)(γ2 − 1)
×

{

(γ2 + 4γ + 1) ln
[

γ +
√

γ2 − 1
]

− (3 + γ)
√

γ2 − 1
}

. (10.60)

where
re = classical radius of the electron, and
γ = Lorentz factor of the positron.

Sampling of the Final State

The target electrons are assumed to be free and at rest: binding effects, that
enable one-photon annihilation [20], are neglected. When the annihilation
occurs in flight, the two photons may have different energies, say E− and
E+ (the photon with lower energy is denoted by the superscript “−”), whose
sum is E + 2mec

2. Each annihilation event is completely characterized by
the quantity

ζ =
E−

E + 2mec2
, (10.61)

which is in the interval ζmin ≤ ζ ≤ 1
2
, with

ζmin =
1

γ + 1 +
√

γ2 − 1
. (10.62)

The parameter ζ is sampled from the differential distribution

P (ζ) =
πr2

e

(γ + 1)(γ2 − 1)
[S(ζ) + S(1 − ζ)], (10.63)

where γ is the Lorentz factor and

S(ζ) = −(γ + 1)2 + (γ2 + 4γ + 1)
1

ζ
− 1

ζ2
. (10.64)

From conservation of energy and momentum, it follows that the two photons
are emitted in directions with polar angles

cos θ− =
1

√

γ2 − 1

(

γ + 1 − 1

ζ

)

(10.65)
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and

cos θ+ =
1

√

γ2 − 1

(

γ + 1 − 1

1 − ζ

)

(10.66)

that are completely determined by ζ ; in particuar, when ζ = ζmin, cos θ− =
−1. The azimuthal angles are φ− and φ+ = φ− + π; owing to the axial
symmetry of the process, the angle φ− is uniformly distributed in (0, 2π).

10.1.9 Status of the document

09.06.2003 created by L. Pandola
20.06.2003 spelling and grammar check by D.H. Wright
07.11.2003 Ionisation and Annihilation section added by L. Pandola
01.06.2005 Added text in the PhotoElectric effect section, L. Pandola
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11.1 Monash Low Energy Photon Processes

11.1.1 Introduction

The Monash Compton Scattering Model is an alternative Compton scattering
model to those of Livermore and Penelope that were constructed using Rib-
berfors’ theoretical framework [1, 2, 3]. The limitation of the Livermore and
Penelope models is that only the components of the pre-collision momentum
of the target electron contained within the photon plane, two-dimensional
plane defined by the incident and scattered photon, is incorporated into their
scattering frameworks [4]. Both models are forced to constrain the ejected
direction of the Compton electron into the photon plane as a result. The
Monash Compton scattering model avoids this limitation through the use of
a two-body fully relativistic three-dimensional scattering framework to en-
sure the conservation of energy and momentum in the Relativistic Impulse
Approximation (RIA) [5].

11.1.2 Physics and Simulation

Total Cross Section

The Monash Compton scattering model has been built using the Livermore
Compton scattering model as a template. As a result the total cross section
for the Compton scattering process mimics the process outlined in Section 9.

Sampling of the Final State

Figure 11.1: Scattering diagram of atomic bound electron Compton scat-
tering. P is the incident photon momentum, Q the electron pre-collision
momentum, P′ the scattered photon momentum and Q′ the recoil electron
momentum.
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The scattering diagram seen in Figure 11.1 outlines the basic principles
of Compton scattering with an electron of non-zero pre-collision momentum
in the RIA.

The process of sampling the target atom, atomic shell and target electron
pre-collision momentum mimic that outlined in Section 9. After the sampling
of these parameters the following four equations are utilised to model the
scattered photon energy E ′, recoil electron energy Tel and recoil electron
polar and azimuthal angles (φ and ψ) with respect to the incident photon
direction:

E ′ =
γmc (c− u cosα)

1 − cos θ + γmc(c−u cos θ cos α−u sin θ sinα cos β)
E

, (11.1)

Tel = E −E ′ −EB, (11.2)

cosφ =
−Y ±

√
Y 2 − 4WZ

2W
, (11.3)

cosψ =
C − B cosφ

A sinφ
, (11.4)

where:

A = E ′u′ sin θ, (11.5)

B = E ′u′ cos θ −Eu′, (11.6)

C = c (E ′ − E) − EE ′

γ′mc
(1 − cos θ) , (11.7)

D =
γmE ′

c
(c− u cos θ cosα− u sin θ cosβ sinα) +m2c2 (γγ′ − 1) − γ′mE ′,

(11.8)

F = (γγ′m2uu′ cosβ sinα− γ′mE ′u′

c
sin θ), (11.9)

G = γγ′m2uu′ sin β sinα, (11.10)

H = (γγ′m2uu′ cosα− γ′mE ′

c
u′ cos θ), (11.11)
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W = (FB −HA)2 + G2A2 +G2B2, (11.12)

Y = 2
(

(AD − FC) (FB −HA) −G2BC
)

, (11.13)

Z = (AD − FC)2 +G2
(

C2 −A2
)

, (11.14)

and c is the speed of light, m is the rest mass of an electron, u is the speed of

the target electron, u′ is the speed of the recoil electron, γ = (1 − (u2/c2))
−1/2

and γ′ = (1 − (u′2/c2))
−1/2

. Further information regarding the Monash
Compton scattering model can be found in [6].

11.1.3 Status of the document
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Chapter 12

Charged Hadron Incident
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12.1 Hadron and Ion Ionization

12.1.1 Method

The class G4hIonisation provides the continuous energy loss due to ionization
and simulates the ’discrete’ part of the ionization, that is, delta rays produced
by charged hadrons. The class G4ionIonisation is intended for the simulation
of energy loss by positive ions with change greater than unit. Inside these
classes the following models are used:

• G4BetherBlochModel (valid for protons with T > 2 MeV )

• G4BraggModel (valid for protons with T < 2 MeV )

• G4BraggIonModel (valid for protons with T < 2 MeV )

• G4ICRU73QOModel (valid for anti-protons with T < 2 MeV )

The scaling relation (7.7) is a basic conception for the description of ionization
of heavy charged particles. It is used both in energy loss calculation and in
determination of the validity range of models. Namely the Tp = 2MeV limit
for protons is scaled for a particle with mass Mi by the ratio of the particle
mass to the proton mass Ti = TpMp/Mi.

For all ionization models the value of the maximum energy transferable
to a free electron Tmax is given by the following relation [1]:

Tmax =
2mec

2(γ2 − 1)

1 + 2γ(me/M) + (me/M)2
, (12.1)

where me is the electron mass and M is the mass of the incident particle.
The method of calculation of the continuous energy loss and the total cross-
section are explained below.

12.1.2 Continuous Energy Loss

The integration of 7.1 leads to the Bethe-Bloch restricted energy loss (T <
Tcut formula [1], which is modified taken into account various corrections [2]:

dE

dx
= 2πr2

emc
2nel

z2

β2

[

ln

(

2mc2β2γ2Tup

I2

)

− β2

(

1 +
Tup

Tmax

)

− δ − 2Ce

Z
+ F

]

(12.2)

203



where

re classical electron radius: e2/(4πǫ0mc
2)

mc2 mass-energy of the electron
nel electrons density in the material
I mean excitation energy in the material
Z atomic number of the material
z charge of the hadron in units of the electron change
γ E/mc2

β2 1 − (1/γ2)
Tup min(Tcut, Tmax)
δ density effect function
Ce shell correction function
F high order corrections

In a single element the electron density is

nel = Z nat = Z
Navρ

A

(Nav: Avogadro number, ρ: density of the material, A: mass of a mole). In
a compound material

nel =
∑

i

Zi nati =
∑

i

Zi
Navwiρ

Ai
.

wi is the proportion by mass of the ith element, with molar mass Ai.
The mean excitation energy I for all elements is tabulated according to

the ICRU recommended values [3].

Shell Correction

2Ce/Z is the so-called shell correction term which accounts for the fact of
interaction of atomic electrons with atomic nucleus. This term more visible
at low energies and for heavy atoms. The classical expression for the term
[4] is used

C =
∑

Cν(θν , ην), ν = K,L,M, ..., θ =
Jν

ǫν
, ην =

β2

α2Z2
ν

, (12.3)

where α is the fine structure constant, β is the hadron velocity, Jν is the
ionisation energy of the shell ν, ǫν is Bohr ionisation energy of the shell
ν, Zν is the effective charge of the shell ν. First terms CK and CL can
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be analytically computed in using an assumption non-relativistic hydrogenic
wave functions [5, 6]. The results [7] of tabulation of these computations in
the interval of parameters ην = 0.005 ÷ 10 and θν = 0.25 ÷ 0.95 are used
directly. For higher values of ην the parameterization [7] is applied:

Cν =
K1

η
+
K2

η2
+
K3

η3
, (12.4)

where coefficients Ki provide smooth shape of the function. The effective nu-
clear charge for the L-shell can be reproduced as ZL = Z−d, d is a parameter
shown in Table 12.24. For outer shells the calculations are not available, so

Z 3 4 5 6 7 8 9 >9
d 1.72 2.09 2.48 2.82 3.16 3.53 3.84 4.15

Table 12.1: Effective nuclear charge for the L-shell [4].

L-shell parameterization is used and the following scaling relation [4, 8] is
applied:

Cν = VνCL(θL, HνηL), Vν =
nν

nL

, Hν =
Jν

JL

, (12.5)

where Vν is a vertical scaling factor proportional to number of electrons at
the shell nν . The contribution of the shell correction term is about 10% for
protons at T = 2MeV .

Density Correction

δ is a correction term which takes into account the reduction in energy loss
due to the so-called density effect. This becomes important at high energies
because media have a tendency to become polarized as the incident particle
velocity increases. As a consequence, the atoms in a medium can no longer
be considered as isolated. To correct for this effect the formulation of Stern-
heimer [9] is used:
x is a kinetic variable of the particle : x = log10(γβ) = ln(γ2β2)/4.606,
and δ(x) is defined by

for x < x0 : δ(x) = 0
for x ∈ [x0, x1] : δ(x) = 4.606x− C + a(x1 − x)m

for x > x1 : δ(x) = 4.606x− C
(12.6)
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where the matter-dependent constants are calculated as follows:

hνp = plasma energy of the medium =
√

4πnelr3
emc

2/α =
√

4πnelre~c
C = 1 + 2 ln(I/hνp)
xa = C/4.606
a = 4.606(xa − x0)/(x1 − x0)

m

m = 3.
(12.7)

For condensed media

I < 100 eV

{

for C ≤ 3.681 x0 = 0.2 x1 = 2
for C > 3.681 x0 = 0.326C − 1.0 x1 = 2

I ≥ 100 eV

{

for C ≤ 5.215 x0 = 0.2 x1 = 3
for C > 5.215 x0 = 0.326C − 1.5 x1 = 3

and for gaseous media

for C < 10. x0 = 1.6 x1 = 4
for C ∈ [10.0, 10.5[ x0 = 1.7 x1 = 4
for C ∈ [10.5, 11.0[ x0 = 1.8 x1 = 4
for C ∈ [11.0, 11.5[ x0 = 1.9 x1 = 4
for C ∈ [11.5, 12.25[ x0 = 2. x1 = 4
for C ∈ [12.25, 13.804[ x0 = 2. x1 = 5
for C ≥ 13.804 x0 = 0.326C − 2.5 x1 = 5.

High Order Corrections

High order corrections term to Bethe-Bloch formula (12.2) can be expressed
as

F = G− S + 2(zL1 + z2L2), (12.8)

where G is the Mott correction term, S is the finite size correction term,
L1 is the Barkas correction, L2 is the Bloch correction. The Mott term [2]
describes the close-collision corrections tend to become more important at
large velocities and higher charge of projectile. The Fermi result is used:

G = παzβ. (12.9)

The Barkas correction term describes distant collisions. The parameteriza-
tion of Ref. is expressed in the form:

L1 =
1.29FA(b/x1/2)

Z1/2x3/2
, x =

β2

Zα2
, (12.10)
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Z 1 (H2 gas) 1 2 3 - 10 11 - 17 18 19 - 25 26 - 50 > 50
d 0.6 1.8 0.6 1.8 1.4 1.8 1.4 1.35 1.3

Table 12.2: Scaled minimum impact parameter b [4].

where FA is tabulated function [10], b is scaled minimum impact parame-
ter shown in Table 12.2. This and other corrections depending on atomic
properties are assumed to be additive for mixtures and compounds. For the
Bloch correction term the classical expression [4] is following:

z2L2 = −y2

∞
∑

n=1

1

n(n2 + y2)
, y =

zα

β
. (12.11)

The finite size correction term takes into account the space distribution of
charge of the projectile particle. For muon it is zero, for hadrons this term
become visible at energies above few hundred GeV and the following param-
eterization [2] is used:

S = ln(1 + q), q =
2meTmax

ε2
, (12.12)

where Tmax is given in relation (12.1), ε is proportional to the inverse ef-
fective radius of the projectile (Table 12.3). All these terms break scaling

mesons, spin = 0 (π±, K±) 0.736 GeV
baryons, spin = 1/2 0.843 GeV

ions 0.843 A1/3 GeV

Table 12.3: The values of the ε parameter for different particle types.

relation (7.7) if the projectile particle charge differs from ±1. To take this
circumstance into account in G4ionIonisation process at initialisation time
the term F is ignored for the computation of the dE/dx table. At run time
this term is taken into account by adding to the mean energy loss a value

∆T ′ = 2πr2
emc

2nel
z2

β2
F∆s, (12.13)

where ∆s is the true step length and F is the high order correction term
(12.8).

Parameterizations at Low Energies

For scaled energies below Tlim = 2 MeV shell correction becomes very large
and precision of the Bethe-Bloch formula degrades, so parameterisation of
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evaluated data for stopping powers at low energies is required. These pa-
rameterisations for all atoms is available from ICRU’49 report [4]. The
proton parametrisation is used in G4BraggModel, which is included by de-
fault in the process G4hIonisation. The alpha particle parameterisation is
used in the G4BraggIonModel, which is included by default in the process
G4ionIonisation. To provide a smooth transition between low-energy and
high-energy models the modified energy loss expression is used for high en-
ergy

S(T ) = SH(T ) + (SL(Tlim) − SH(Tlim))
Tlim

T
, T > Tlim, (12.14)

where S is smoothed stopping power, SH is stopping power from formula
(12.2) and SL is the low-energy parameterisation.

The precision of Bethe-Bloch formula for T > 10MeV is within 2%, below
the precision degrades and at 1keV only 20% may be garanteed. In the energy
interval 1 − 10MeV the quality of description of the stopping power varied
from atom to atom. To provide more stable and precise parameterisation
the data from the NIST databases are included inside the standard package.
These data are provided for 74 materials of the NIST material database [11].
The data from the PSTAR database are included into G4BraggModel. The
data from the ASTAR database are included into G4BraggIonModel. So, if
Geant4 material is defined as a NIST material, than NIST data are used for
low-energy parameterisation of stopping power. If material is not from the
NIST database, then the ICRU’49 parameterisation is used.

12.1.3 Nuclear Stopping

Nuclear stopping due to elastic ion-ion scattering since Geant4 v9.3 can be
simulated with the continuous process G4NuclearStopping. By default this
correction is active and the ICRU’49 parameterisation [4] is used, which is
implemented in the model class G4ICRU49NuclearStoppingModel.

12.1.4 Total Cross Section per Atom

For T ≫ I the differential cross section can be written as

dσ

dT
= 2πr2

emc
2Z

z2
p

β2

1

T 2

[

1 − β2 T

Tmax
+

T 2

2E2

]

(12.15)
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[1]. In Geant4 Tcut ≥ 1 keV. Integrating from Tcut to Tmax gives the total
cross section per atom :

σ(Z,E, Tcut) =
2πr2

eZz
2
p

β2
mc2 × (12.16)

[(

1

Tcut
− 1

Tmax

)

− β2

Tmax
ln
Tmax

Tcut
+
Tmax − Tcut

2E2

]

The last term is for spin 1/2 only. In a given material the mean free path is:

λ = (nat · σ)−1 or λ = (
∑

i nati · σi)
−1 (12.17)

The mean free path is tabulated during initialization as a function of the
material and of the energy for all kinds of charged particles.

12.1.5 Simulating Delta-ray Production

A short overview of the sampling method is given in Chapter 2. Apart from
the normalization, the cross section 12.15 can be factorized :

dσ

dT
= f(T )g(T ) with T ∈ [Tcut, Tmax] (12.18)

where

f(T ) =

(

1

Tcut
− 1

Tmax

)

1

T 2
(12.19)

g(T ) = 1 − β2 T

Tmax
+

T 2

2E2
. (12.20)

The last term in g(T ) is for spin 1/2 only. The energy T is chosen by

1. sampling T from f(T )

2. calculating the rejection function g(T ) and accepting the sampled T
with a probability of g(T ).

After the successful sampling of the energy, the direction of the scattered elec-
tron is generated with respect to the direction of the incident particle. The
azimuthal angle φ is generated isotropically. The polar angle θ is calculated
from energy-momentum conservation. This information is used to calculate
the energy and momentum of both scattered particles and to transform them
into the global coordinate system.
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12.1.6 Ion Effective Charge

As ions penetrate matter they exchange electrons with the medium. In the
implementation of G4ionIonisation the effective charge approach is used [12].
A state of equilibrium between the ion and the medium is assumed, so that
the ion’s effective charge can be calculated as a function of its kinetic energy
in a given material. Before and after each step the dynamic charge of the ion
is recalculated and saved in G4DynamicParticle, where it can be used not
only for energy loss calculations but also for the sampling of transportation
in an electromagnetic field.

The ion effective charge is expressed via the ion charge zi and the frac-
tional effective charge of ion γi:

zeff = γizi. (12.21)

For helium ions fractional effective charge is parameterized for all elements

(γHe)
2 =

(

1 − exp

[

−
5
∑

j=0

CjQ
j

])

(

1 +
7 + 0.05Z

1000
exp(−(7.6 −Q)2)

)2

,

Q = max(0, lnT ), (12.22)

where the coefficients Cj are the same for all elements, and the helium ion
kinetic energy T is in keV/amu.

The following expression is used for heavy ions [13]:

γi =

(

q +
1 − q

2

(

v0

vF

)2

ln
(

1 + Λ2
)

)

(

1 +
(0.18 + 0.0015Z) exp(−(7.6 −Q)2)

Z2
i

)

,

(12.23)
where q is the fractional average charge of the ion, v0 is the Bohr velocity,
vF is the Fermi velocity of the electrons in the target medium, and Λ is the
term taking into account the screening effect:

Λ = 10
vF

v0

(1 − q)2/3

Z
1/3
i (6 + q)

. (12.24)

The Fermi velocity of the medium is of the same order as the Bohr veloc-
ity, and its exact value depends on the detailed electronic structure of the
medium. The expression for the fractional average charge of the ion is the
following:

q = [1 − exp(0.803y0.3 − 1.3167y0.6 − 0.38157y − 0.008983y2)], (12.25)
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where y is a parameter that depends on the ion velocity vi

y =
vi

v0Z2/3

(

1 +
v2

F

5v2
i

)

. (12.26)

The parametrisation of the effective charge of the ion applied if the kinetic
energy is below limit value

T < 10zi
Mi

Mp
MeV, (12.27)

where Mi is the ion mass and Mp is the proton mass.

12.1.7 Status of this document

09.10.98 created by L. Urbán.
14.12.01 revised by M.Maire
29.11.02 re-worded by D.H. Wright
01.12.03 revised by V. Ivanchenko
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25.11.11 revised by V. Ivanchenko
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12.2 Low energy extentions

12.2.1 Energy losses of slow negative particles

At low energies, e.g. below a few MeV for protons/antiprotons, the Bethe-
Bloch formula is no longer accurate in describing the energy loss of charged
hadrons and higher Z terms should be taken in account. Odd terms in Z
lead to a significant difference between energy loss of positively and nega-
tively charged particles. The energy loss of negative hadrons is scaled from
that of antiprotons. The antiproton energy loss is calculated according to
the quantum harmonic oscillator model is used, as described in [1] and ref-
erences therein. The lower limit of applicability of the model is chosen for
all materials at 10 keV . Below this value stopping power is set to constant
equal to the dE/dx at 10 keV .

12.2.2 Energy losses of hadrons in compounds

To obtain energy losses in a mixture or compound, the absorber can be
thought of as made up of thin layers of pure elements with weights propor-
tional to the electron density of the element in the absorber (Bragg’s rule):

dE

dx
=
∑

i

(

dE

dx

)

i

, (12.28)

where the sum is taken over all elements of the absorber, i is the number of
the element, (dE

dx
)i is energy loss in the pure i-th element.

Bragg’s rule is very accurate for relativistic particles when the interaction
of electrons with a nucleus is negligible. But at low energies the accuracy of
Bragg’s rule is limited because the energy loss to the electrons in any material
depends on the detailed orbital and excitation structure of the material. In
the description of Geant4 materials there is a special attribute: the chemical
formula. It is used in the following way:

• if the data on the stopping power for a compound as a function of
the proton kinetic energy is available (Table 12.4), then the direct
parametrisation of the data for this material is performed;

• if the data on the stopping power for a compound is available for only
one incident energy (Table 12.5), then the computation is performed
based on Bragg’s rule and the chemical factor for the compound is
taken into account;
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Table 12.4: The list of chemical formulae of compounds for which parametri-
sation of stopping power as a function of kinetic energy is in Ref.[3].

Number Chemical formula
1. AlO
2. C 2O
3. CH 4
4. (C 2H 4) N-Polyethylene
5. (C 2H 4) N-Polypropylene
6. (C 8H 8) N
7. C 3H 8
8. SiO 2
9. H 2O
10. H 2O-Gas
11. Graphite

• if there are no data for the compound, the computation is performed
based on Bragg’s rule.

In the review [2] the parametrisation stopping power data are presented as

Se(Tp) = SBragg(Tp)

[

1 +
f(Tp)

f(125 keV )

(

Sexp(125 keV )

SBragg(125 keV )
− 1

)]

, (12.29)

where Sexp(125 keV ) is the experimental value of the energy loss for the
compound for 125 keV protons or the reduced experimental value for He
ions, SBragg(Tp) is a value of energy loss calculated according to Bragg’s
rule, and f(Tp) is a universal function, which describes the disappearance of
deviations from Bragg’s rule for higher kinetic energies according to:

f(Tp) =
1

1 + exp
[

1.48( β(Tp)

β(25 keV )
− 7.0)

] , (12.30)

where β(Tp) is the relative velocity of the proton with kinetic energy Tp.

12.2.3 Fluctuations of energy losses of hadrons

The total continuous energy loss of charged particles is a stochastic quantity
with a distribution described in terms of a straggling function. The strag-
gling is partially taken into account by the simulation of energy loss by the
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Table 12.5: The list of chemical formulae of compounds for which the chem-
ical factor is calculated from the data of Ref.[2].

Number Chemical formula Number Chemical formula
1. H 2O 28. C 2H 6
2. C 2H 4O 29. C 2F 6
3. C 3H 6O 30. C 2H 6O
4. C 2H 2 31. C 3H 6O
5. C H 3OH 32. C 4H 10O
6. C 2H 5OH 33. C 2H 4
7. C 3H 7OH 34. C 2H 4O
8. C 3H 4 35. C 2H 4S
9. NH 3 36. SH 2
10. C 14H 10 37. CH 4
11. C 6H 6 38. CCLF 3
12. C 4H 10 39. CCl 2F 2
13. C 4H 6 40. CHCl 2F
14. C 4H 8O 41. (CH 3) 2S
15. CCl 4 42. N 2O
16. CF 4 43. C 5H 10O
17. C 6H 8 44. C 8H 6
18. C 6H 12 45. (CH 2) N
19. C 6H 10O 46. (C 3H 6) N
20. C 6H 10 47. (C 8H 8) N
21. C 8H 16 48. C 3H 8
22. C 5H 10 49. C 3H 6-Propylene
23. C 5H 8 50. C 3H 6O
24. C 3H 6-Cyclopropane 51. C 3H 6S
25. C 2H 4F 2 52. C 4H 4S
26. C 2H 2F 2 53. C 7H 8
27. C 4H 8O 2
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production of δ-electrons with energy T > Tc. However, continuous energy
loss also has fluctuations. Hence in the current GEANT4 implementation
two different models of fluctuations are applied depending on the value of
the parameter κ which is the lower limit of the number of interactions of the
particle in the step. The default value chosen is κ = 10. To select a model
for thick absorbers the following boundary conditions are used:

∆E > Tcκ) or Tc < Iκ, (12.31)

where ∆E is the mean continuous energy loss in a track segment of length
s, Tc is the cut kinetic energy of δ-electrons, and I is the average ionisation
potential of the atom.

For long path lengths the straggling function approaches the Gaussian
distribution with Bohr’s variance [3]:

Ω2 = KNel
Z2

h

β2
Tcsf

(

1 − β2

2

)

, (12.32)

where f is a screening factor, which is equal to unity for fast particles, whereas
for slow positively charged ions with β2 < 3Z(v0/c)

2 f = a + b/Z2
eff , where

parameters a and b are parametrised for all atoms [4, 5].
For short path lengths, when the condition 12.31 is not satisfied, the

model described in the charter 7.2 is applied.

12.2.4 ICRU 73-based energy loss model

The ICRU 73 [1] report contains stopping power tables for ions with atomic
numbers 3–18 and 26, covering a range of different elemental and compound
target materials. The stopping powers derive from calculations with the
PASS code [6], which implements the binary stopping theory described in
[6, 7]. Tables in ICRU 73 extend over an energy range up to 1 GeV/nucleon.
All stopping powers were incorporated into Geant4 and are available through
a parameterisation model (G4IonParametrisedLossModel). For a few mate-
rials revised stopping powers were included (water, water vapor, nylon type
6 and 6/6 from P. Sigmund et al [8] and copper from P. Sigmund [9]), which
replace the corresponding tables of the original ICRU 73 report.

To account for secondary electron production above Tc, the continuous
energy loss per unit path length is calculated according to

dE

dx

∣

∣

∣

∣

T<TC

=

(

dE

dx

)

ICRU73

−
(

dE

dx

)

δ

(12.33)
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where (dE/dx)ICRU73 refers to stopping powers obtained by interpolating
ICRU 73 tables and (dE/dx)δ is the mean energy transferred to δ-electrons
per path length given by

(

dE

dx

)

δ

=
∑

i

nat,i

∫ Tmax

Tc

dσi(T )

dT
TdT (12.34)

where the index i runs over all elements composing the material, nat,i is
the number of atoms of the element i per volume, Tmax is the maximum
energy transferable to an electron according to formula and dσi/dT specifies
the differential cross section per atom for producing an δ-electron following
equation

For compound targets not considered in the ICRU 73 report, the first
term on the rightern side in equation (12.33) is computed by applying Bragg’s
additivity rule [3] if tables for all elemental components are available in ICRU
73.

12.2.5 Status of this document

21.11.2000 Created by V.Ivanchenko
30.05.2001 Modified by V.Ivanchenko
23.11.2001 Modified by M.G. Pia to add PIXE section.
19.01.2002 Minor corrections (mma)
13.05.2002 Minor corrections (V.Ivanchenko)
28.08.2002 Minor corrections (V.Ivanchenko)
11.12.2009 Modified by A. Lechner to add ICRU 73 section
20.11.2011 Updated by V.Ivanchenko
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Chapter 13

Muon Incident
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13.1 Muon Ionization

The class G4MuIonisation provides the continuous energy loss due to ion-
ization and simulates the ’discrete’ part of the ionization, that is, delta rays
produced by muons. Inside this class the following models are used:

• G4BraggModel (valid for protons with T < 0.2 MeV )

• G4BetherBlochModel (valid for protons with 0.2 MeV < T < 1 GeV )

• G4MuBetherBlochModel (valid for protons with T > 1 GeV )

The limit energy 0.2 MeV is equivalent to the proton limit energy 2MeV
because of scaling relation (7.7), which allows simulation for muons with
energy below 1 GeV in the same way as for point-like hadrons with spin 1/2
described in the section 7.1.

For higher energies the G4MuBetherBlochModel is applied, in which lead-
ing radiative corrections are taken into account [1]. Simple analytical formula
for the cross section, derived with the logarithmic are used. Calculation re-
sults appreciably differ from usual elastic µ − e scattering in the region of
high energy transfers me << T < Tmax and give non-negligible correction to
the total average energy loss of high-energy muons. The total cross section
is written as following:

σ(E, ǫ) = σBB(E, ǫ)

[

1 +
α

2π
ln

(

1 +
2ǫ

me

)

ln

(

4meE(E − ǫ)

m2
µ(2ǫ+me)

)]

, (13.1)

here σ(E, ǫ) is the differential cross sections, σ(E, ǫ)BB is the Bethe-Bloch
cross section (12.15), me is the electron mass, mµ is the muon mass, E is the
muon energy, ǫ is the energy transfer, ǫ = ω + T , where T is the electron
kinetic energy and ω is the energy of radiative gamma.

For computation of the truncated mean energy loss (7.1) the partial in-
tegration of the expression (13.1) is performed

S(E, ǫup) = SBB(E, ǫup) + SRC(E, ǫup), ǫup = min(ǫmax, ǫcut), (13.2)

where term SBB is the Bethe-Bloch truncated energy loss (12.2) for the inter-
val of energy transfer (0− ǫup) and term SRC is a correction due to radiative
effects. The function become smooth after log-substitution and is computed
by numerical integration

SRC(E, ǫup) =

∫ ln ǫup

ln ǫ1

ǫ2(σ(E, ǫ) − σBB(E, ǫ))d(ln ǫ), (13.3)
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where lower limit ǫ1 does not effect result of integration in first order and in
the class G4MuBetheBlochModel the default value ǫ1 = 100keV is used.

For computation of the discrete cross section (7.2) another substitution
is used in order to perform numerical integration of a smooth function

σ(E) =

∫ 1/ǫup

1/ǫmax

ǫ2σ(E, ǫ)d(1/ǫ). (13.4)

The sampling of energy transfer is performed between 1/ǫup and 1/ǫmax using
rejection constant for the function ǫ2σ(E, ǫ). After the successful sampling
of the energy transfer, the direction of the scattered electron is generated
with respect to the direction of the incident particle. The energy of radiative
gamma is neglected. The azimuthal electron angle φ is generated isotropi-
cally. The polar angle θ is calculated from energy-momentum conservation.
This information is used to calculate the energy and momentum of both
scattered particles and to transform them into the global coordinate system.
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13.2 Bremsstrahlung

Bremsstrahlung dominates other muon interaction processes in the region
of catastrophic collisions (v ≥ 0.1 ), that is at ”moderate” muon energies
above the kinematic limit for knock–on electron production. At high energies
(E ≥ 1 TeV) this process contributes about 40% of the average muon energy
loss.

13.2.1 Differential Cross Section

The differential cross section for muon bremsstrahlung (in units of cm2/(g GeV))
can be written as

dσ(E, ǫ, Z, A)

dǫ
=

16

3
αNA(

m

µ
re)

2 1

ǫA
Z(ZΦn + Φe)(1 − v +

3

4
v2)

= 0 if ǫ ≥ ǫmax = E − µ, (13.5)

where µ and m are the muon and electron masses, Z and A are the atomic
number and atomic weight of the material, and NA is Avogadro’s number.
If E and T are the initial total and kinetic energy of the muon, and ǫ is
the emitted photon energy, then ǫ = E −E ′ and the relative energy transfer
v = ǫ/E.

Φn represents the contribution of the nucleus and can be expressed as

Φn = ln
BZ−1/3(µ+ δ(D′

n

√
e− 2))

D′
n(m+ δ

√
eBZ−1/3)

;

= 0 if negative.

Φe represents the contribution of the electrons and can be expressed as

Φe = ln
B′Z−2/3µ

(

1 +
δµ

m2
√
e

)

(m+ δ
√
eB′Z−2/3)

;

= 0 if ǫ ≥ ǫ′max = E/(1 + µ2/2mE);

= 0 if negative.

In Φn and Φe, for all nuclei except hydrogen,

δ = µ2ǫ/2EE ′ = µ2v/2(E − ǫ);

D′
n = D(1−1/Z)

n , Dn = 1.54A0.27;

B = 183, B′ = 1429,
√
e = 1.648(721271).
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For hydrogen (Z=1) B = 202.4, B′ = 446, D′
n = Dn.

These formulae are taken mostly from Refs. [1] and [2]. They include
improved nuclear size corrections in comparison with Ref. [3] in the region
v ∼ 1 and low Z. Bremsstrahlung on atomic electrons (taking into account
target recoil and atomic binding) is introduced instead of a rough substitution
Z(Z + 1). A correction for processes with nucleus excitation is also included
[4].

Applicability and Restrictions of the Method

The above formulae assume that:
1. E ≫ µ, hence the ultrarelativistic approximation is used;
2. E ≤ 1020 eV; above this energy, LPM suppression can be expected;
3. v ≥ 10−6 ; below 10−6 Ter-Mikaelyan suppression takes place. However, in
the latter region the cross section of muon bremsstrahlung is several orders
of magnitude less than that of other processes.
The Coulomb correction (for high Z) is not included. However, existing
calculations [5] show that for muon bremsstrahlung this correction is small.

13.2.2 Continuous Energy Loss

The restricted energy loss for muon bremsstrahlung (dE/dx)rest with relative
transfers v = ǫ/(T + µ) ≤ vcut can be calculated as follows :

(

dE

dx

)

rest

=

∫ ǫcut

0

ǫ σ(E, ǫ) dǫ = (T + µ)

∫ vcut

0

ǫ σ(E, ǫ) dv .

If the user cut vcut ≥ vmax = T/(T + µ), the total average energy loss is
calculated. Integration is done using Gaussian quadratures, and binning
provides an accuracy better than about 0.03% for T = 1 GeV, Z = 1. This
rapidly improves with increasing T and Z.

13.2.3 Total Cross Section

The integration of the differential cross section over dǫ gives the total cross
section for muon bremsstrahlung:

σtot(E, ǫcut) =

∫ ǫmax

ǫcut

σ(E, ǫ)dǫ =

∫ ln vmax

ln vcut

ǫσ(E, ǫ)d(ln v), (13.6)

where vmax = T/(T + µ). If vcut ≥ vmax , σtot = 0.
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13.2.4 Sampling

The photon energy ǫp is found by numerically solving the equation :

P =

∫ ǫmax

ǫp

σ(E, ǫ, Z, A) dǫ

/∫ ǫmax

ǫcut

σ(E, ǫ, Z, A) dǫ .

Here P is the random uniform probability, ǫmax = T , and ǫcut = (T + µ) ·
vcut. vmin.cut = 10−5 is the minimal relative energy transfer adopted in the
algorithm.

For fast sampling, the solution of the above equation is tabulated at
initialization time for selected Z, T and P . During simulation, this table is
interpolated in order to find the value of ǫp corresponding to the probability
P .

The tabulation routine uses accurate functions for the differential cross
section. The table contains values of

xp = ln(vp/vmax)/ ln(vmax/vcut), (13.7)

where vp = ǫp/(T + µ) and vmax = T/(T + µ). Tabulation is performed
in the range 1 ≤ Z ≤ 128, 1 ≤ T ≤ 1000 PeV, 10−5 ≤ P ≤ 1 with con-
stant logarithmic steps. Atomic weight (which is a required parameter in the
cross section) is estimated here with an iterative solution of the approximate
relation:

A = Z (2 + 0.015A2/3).

For Z = 1, A = 1 is used.
To find xp (and thus ǫp) corresponding to a given probability P , the

sampling method performs a linear interpolation in lnZ and lnT , and a
cubic, 4 point Lagrangian interpolation in lnP . For P ≤ Pmin, a linear
interpolation in (P, x) coordinates is used, with x = 0 at P = 0. Then the
energy ǫp is obtained from the inverse transformation of 13.7 :

ǫp = (T + µ)vmax(vmax/vcut)
xp

The algorithm with the parameters described above has been tested for var-
ious Z and T . It reproduces the differential cross section to within 0.2 –
0.7 % for T ≥ 10 GeV. The average total energy loss is accurate to within
0.5%. While accuracy improves with increasing T , satisfactory results are
also obtained for 1 ≤ T ≤ 10 GeV.

It is important to note that this sampling scheme allows the generation
of ǫp for different user cuts on v which are above vmin.cut. To perform such a
simulation, it is sufficient to define a new probability variable

P ′ = P σtot (vuser.cut)/σtot(vmin.cut)
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and use it in the sampling method. Time consuming re-calculation of the
3-dimensional table is therefore not required because only the tabulation of
σtot(vuser.cut) is needed.

The small-angle, ultrarelativistic approximation is used for the simulation
(with about 20% accuracy at θ ≤ θ∗ ≈ 1) of the angular distribution of the
final state muon and photon. Since the target recoil is small, the muon
and photon are directed symmetrically (with equal transverse momenta and
coplanar with the initial muon):

p⊥µ = p⊥γ, where p⊥µ = E ′θµ, p⊥γ = ǫθγ . (13.8)

θµ and θγ are muon and photon emission angles. The distribution in the
variable r = Eθγ/µ is given by

f(r)dr ∼ rdr/(1 + r2)2. (13.9)

Random angles are sampled as follows:

θγ =
µ

E
r θµ =

ǫ

E ′ θγ , (13.10)

where

r =

√

a

1 − a
, a = ξ

r2
max

1 + r2
max

, rmax = min(1, E ′/ǫ) · E θ∗/µ ,

and ξ is a random number uniformly distributed between 0 and 1.

13.2.5 Status of this document

09.10.98 created by R.Kokoulin and A.Rybin
17.05.00 updated by S.Kelner, R.Kokoulin and A.Rybin
30.11.02 re-written by D.H. Wright

Bibliography

[1] S.R.Kelner, R.P.Kokoulin, A.A.Petrukhin. Preprint MEPhI 024-95,
Moscow, 1995; CERN SCAN-9510048.

[2] S.R.Kelner, R.P.Kokoulin, A.A.Petrukhin. Phys. Atomic Nuclei, 60
(1997) 576.

[3] A.A.Petrukhin, V.V.Shestakov. Canad.J.Phys., 46 (1968) S377.

225



[4] Yu.M.Andreyev, L.B.Bezrukov, E.V.Bugaev. Phys. Atomic Nuclei, 57
(1994) 2066.

[5] Yu.M.Andreev, E.V.Bugaev, Phys. Rev. D, 55 (1997) 1233.

226



13.3 Positron - Electron Pair Production by

Muons

Direct electron pair production is one of the most important muon inter-
action processes. At TeV muon energies, the pair production cross section
exceeds those of other muon interaction processes over a range of energy
transfers between 100 MeV and 0.1Eµ. The average energy loss for pair
production increases linearly with muon energy, and in the TeV region this
process contributes more than half the total energy loss rate.

To adequately describe the number of pairs produced, the average energy
loss and the stochastic energy loss distribution, the differential cross section
behavior over an energy transfer range of 5 MeV ≤ ǫ ≤ 0.1 ·Eµ must be
accurately reproduced. This is is because the main contribution to the total
cross section is given by transferred energies 5 MeV ≤ ǫ ≤ 0.01 ·Eµ, and be-
cause the contribution to the average muon energy loss is determined mostly
in the region 0.001 · Eµ ≤ ǫ ≤ 0.1 ·Eµ .

For a theoretical description of the cross section, the formulae of Ref. [1]
are used, along with a correction for finite nuclear size [2]. To take into
account electron pair production in the field of atomic electrons, the inelastic
atomic form factor contribution of Ref. [3] is also applied.

13.3.1 Differential Cross Section

Definitions and Applicability

In the following discussion, these definitions are used:

• m and µ are the electron and muon masses, respectively

• E ≡ Eµ is the total muon energy, E = T + µ

• Z and A are the atomic number and weight of the material

• ǫ is the total pair energy or, approximately, the muon energy loss (E−
E ′)

• v = ǫ/E

• e = 2.718 . . .

• A⋆ = 183.

The formula for the differential cross section applies when:
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• Eµ ≫ µ (E ≥ 2 – 5 GeV) and Eµ ≤ 1015 – 1017 eV. If muon energies
exceed this limit, the LPM (Landau Pomeranchuk Migdal) effect may
become important, depending on the material

• the muon energy transfer ǫ lies between ǫmin = 4m and ǫmax = Eµ −
3
√

e
4
µZ1/3, although the formal lower limit is ǫ ≫ 2m, and the formal

upper limit requires E ′
µ ≫ µ.

• Z ≤ 40 – 50. For higher Z, the Coulomb correction is important but
has not been sufficiently studied theoretically.

Formulae

The differential cross section for electron pair production by muons σ(Z,A,E, ǫ)
can be written as :

σ(Z,A,E, ǫ) =
4

3π

Z(Z + ζ)

A
NA (αr0)

2 1 − v

ǫ

∫ ρmax

0

G(Z,E, v, ρ) dρ,

(13.11)
where

G(Z,E, v, ρ) = Φe + (m/µ)2Φµ,

Φe,µ = Be,µL
′
e,µ

and
Φe,µ = 0 whenever Φe,µ < 0.

Be and Bµ do not depend on Z,A, and are given by

Be = [(2 + ρ2)(1 + β) + ξ(3 + ρ2)] ln

(

1 +
1

ξ

)

+
1 − ρ2 − β

1 + ξ
− (3 + ρ2);

Be ≈
1

2ξ
[(3 − ρ2) + 2β(1 + ρ2)] for ξ ≥ 103;

Bµ =

[

(1 + ρ2)

(

1 +
3β

2

)

− 1

ξ
(1 + 2β)(1 − ρ2)

]

ln(1 + ξ)

+
ξ(1 − ρ2 − β)

1 + ξ
+ (1 + 2β)(1 − ρ2);

Bµ ≈ ξ

2
[(5 − ρ2) + β(3 + ρ2)] for ξ ≤ 10−3;

Also,
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ξ =
µ2v2

4m2

(1 − ρ2)

(1 − v)
; β =

v2

2(1 − v)
;

L′
e = ln

A∗Z−1/3
√

(1 + ξ)(1 + Ye)

1 +
2m

√
eA∗Z−1/3(1 + ξ)(1 + Ye)

Ev(1 − ρ2)

−1

2
ln

[

1 +

(

3mZ1/3

2µ

)2

(1 + ξ)(1 + Ye)

]

;

L′
µ = ln

(µ/m)A∗Z−1/3
√

(1 + 1/ξ)(1 + Yµ)

1 +
2m

√
eA∗Z−1/3(1 + ξ)(1 + Yµ)

Ev(1 − ρ2)

− ln

[

3

2
Z1/3

√

(1 + 1/ξ)(1 + Yµ)

]

.

For faster computing, the expressions for L′
e,µ are further algebraically trans-

formed. The functions L′
e,µ include the nuclear size correction [2] in compar-

ison with parameterization [1] :

Ye =
5 − ρ2 + 4 β (1 + ρ2)

2(1 + 3β) ln(3 + 1/ξ) − ρ2 − 2β(2 − ρ2)
;

Yµ =
4 + ρ2 + 3 β (1 + ρ2)

(1 + ρ2)(3
2

+ 2β) ln(3 + ξ) + 1 − 3
2
ρ2

;

ρmax = [1 − 6µ2/E2(1 − v)]
√

1 − 4m/Ev.

Comment on the Calculation of the Integral
∫

dρ in Eq. 13.11

The integral
ρmax
∫

0

G(Z,E, v, ρ) dρ is computed with the substitutions:

t = ln(1 − ρ),

1 − ρ = exp(t),

1 + ρ = 2 − exp(t),

1 − ρ2 = et (2 − et).

After that,

∫ ρmax

0

G(Z,E, v, ρ) dρ =

∫ 0

tmin

G(Z,E, v, ρ) et dt, (13.12)

229



where

tmin = ln

4m

ǫ
+

12µ2

EE ′

(

1 − 4m

ǫ

)

1 +

(

1 − 6µ2

EE ′

)

√

1 − 4m

ǫ

.

To compute the integral of Eq. 13.12 with an accuracy better than 0.5%,
Gaussian quadrature with N = 8 points is sufficient.

The function ζ(E,Z) in Eq. 13.11 serves to take into account the process
on atomic electrons (inelastic atomic form factor contribution). To treat
the energy loss balance correctly, the following approximation, which is an
algebraic transformation of the expression in Ref. [3], is used:

ζ(E,Z) =

0.073 ln
E/µ

1 + γ1Z2/3E/µ
− 0.26

0.058 ln
E/µ

1 + γ2Z1/3E/µ
− 0.14

;

ζ(E,Z) = 0 if the numerator is negative.

For E ≤ 35µ, ζ(E,Z) = 0. Also γ1 = 1.95 · 10−5 and γ2 = 5.30 · 10−5.
The above formulae make use of the Thomas-Fermi model which is not

good enough for light elements. For hydrogen (Z = 1) the following param-
eters must be changed:
A∗ = 183 ⇒ 202.4;
γ1 = 1.95 · 10−5 ⇒ 4.4 · 10−5;
γ2 = 5.30 · 10−5 ⇒ 4.8 · 10−5.

13.3.2 Total Cross Section and Restricted Energy Loss

If the user’s cut for the energy transfer ǫcut is greater than ǫmin, the process is
represented by continuous restricted energy loss for interactions with ǫ ≤ ǫcut,
and discrete collisions with ǫ > ǫcut. Respective values of the total cross
section and restricted energy loss rate are defined as:

σtot =

∫ ǫmax

ǫcut

σ(E, ǫ) dǫ; (dE/dx)restr =

∫ ǫcut

ǫmin

ǫ σ(E, ǫ) dǫ.

For faster computing, ln ǫ substitution and Gaussian quadratures are used.
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13.3.3 Sampling of Positron - Electron Pair Produc-

tion

The e+e− pair energy ǫP , is found numerically by solving the equation

P =

∫ ǫmax

ǫP

σ(Z,A, T, ǫ)dǫ /

∫ ǫmax

cut

σ(Z,A, T, ǫ)dǫ (13.13)

or

1 − P =

∫ ǫP

cut

σ(Z,A, T, ǫ)dǫ /

∫ ǫmax

cut

σ(Z,A, T, ǫ)dǫ (13.14)

To reach high sampling speed, solutions of Eqs. 13.13, 13.14 are tabulated
at initialization time. Two 3-dimensional tables (referred to here as A and
B) of ǫP (P, T, Z) are created, and then interpolation is used to sample ǫP .
The number and spacing of entries in the table are chosen as follows:

• a constant increment in lnT is chosen such that there are four points
per decade in the range Tmin−Tmax. The default range of muon kinetic
energies in Geant4 is T = 1 GeV − 1000 PeV.

• a constant increment in lnZ is chosen. The shape of the sampling dis-
tribution does depend on Z, but very weakly, so that eight points in the
range 1 ≤ Z ≤ 128 are sufficient. There is practically no dependence
on the atomic weight A.

• for probabilities P ≤ 0.5, Eq. 13.13 is used and Table A is computed
with a constant increment in lnP in the range 10−7 ≤ P ≤ 0.5. The
number of points in lnP for Table A is about 100.

• for P ≥ 0.5, Eq. 13.14 is used and Table B is computed with a constant
increment in ln(1− P ) in the range 10−5 ≤ (1− P ) ≤ 0.5. In this case
50 points are sufficient.

The values of ln(ǫP − cut) are stored in both Table A and Table B.
To create the “probability tables” for each (T, Z) pair, the following pro-

cedure is used:

• a temporary table of ∼ 2000 values of ǫ · σ(Z,A, T, ǫ) is constructed
with a constant increment (∼ 0.02) in ln ǫ in the range (cut, ǫmax). ǫ is
taken in the middle of the corresponding bin in ln ǫ.

• the accumulated cross sections

σ1 =

∫ ln ǫmax

ln ǫ

ǫ σ(Z,A, T, ǫ) d(ln ǫ)
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and

σ2 =

∫ ln ǫ

ln(cut)

ǫ σ(Z,A, T, ǫ) d(ln ǫ)

are calculated by summing the temporary table over the values above
ln ǫ (for σ1) and below ln ǫ (for σ2) and then normalizing to obtain the
accumulated probability functions.

• finally, values of ln(ǫP − cut) for corresponding values of lnP and
ln(1 − P ) are calculated by linear interpolation of the above accumu-
lated probabilities to form Tables A and B. The monotonic behavior of
the accumulated cross sections is very useful in speeding up the inter-
polation procedure.

The random transferred energy corresponding to a probability P , is then
found by linear interpolation in lnZ and lnT , and a cubic interpolation in
lnP for Table A or in ln(1−P ) for Table B. For P ≤ 10−7 and (1−P ) ≤ 10−5,
linear extrapolation using the entries at the edges of the tables may be safely
used. Electron pair energy is related to the auxiliary variable x = ln(ǫP −cut)
found by the trivial interpolation ǫP = ex + cut.

Similar to muon bremsstrahlung (section 13.2), this sampling algorithm
does not re-initialize the tables for user cuts greater than cutmin. Instead,
the probability variable is redefined as

P ′ = Pσtot(cutuser)/σtot(cutmin),

and P ′ is used for sampling.
In the simulation of the final state, the muon deflection angle (which is

of the order of m/E) is neglected. The procedure for sampling the energy
partition between e+ and e− and their emission angles is similar to that used
for the γ → e+ e− conversion.

13.3.4 Status of this document
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13.4 Muon Photonuclear Interaction

The inelastic interaction of muons with nuclei is important at high muon en-
ergies (E ≥ 10 GeV), and at relatively high energy transfers ν (ν/E ≥ 10−2).
It is especially important for light materials and for the study of detector re-
sponse to high energy muons, muon propagation and muon-induced hadronic
background. The average energy loss for this process increases almost lineary
with energy, and at TeV muon energies constitutes about 10% of the energy
loss rate.

The main contribution to the cross section σ(E, ν) and energy loss comes
from the low Q2–region ( Q2 ≪ 1 GeV2). In this domain, many simplifi-
cations can be made in the theoretical consideration of the process in order
to obtain convenient and simple formulae for the cross section. Most widely
used are the expressions given by Borog and Petrukhin [1], and Bezrukov and
Bugaev [2]. Results from these authors agree within 10% for the differential
cross section and within about 5% for the average energy loss, provided the
same photonuclear cross section, σγN , is used in the calculations.

13.4.1 Differential Cross Section

The Borog and Petrukhin formula for the cross section is based on:

• Hand’s formalism [3] for inelastic muon scattering,

• a semi-phenomenological inelastic form factor, which is a Vector Dom-
inance Model with parameters estimated from experimental data, and

• nuclear shadowing effects with a reasonable theoretical parameteriza-
tion [4].

For E ≥ 10 GeV, the Borog and Petrukhin cross section (cm2/g GeV), dif-
ferential in transferred energy, is

σ(E, ν) = Ψ(ν)Φ(E, v), (13.15)

Ψ(ν) =
α

π

AeffNAV

A
σγN (ν)

1

ν
, (13.16)

Φ(E, v) = v − 1 +

[

1 − v +
v2

2

(

1 +
2µ2

Λ2

)]

ln

E2(1 − v)

µ2

(

1 +
µ2v2

Λ2(1 − v)

)

1 +
Ev

Λ

(

1 +
Λ

2M
+
Ev

Λ

) ,

(13.17)
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where ν is the energy lost by the muon, v = ν/E, and µ and M are
the muon and nucleon (proton) masses, respectively. Λ is a Vector Dom-
inance Model parameter in the inelastic form factor which is estimated to be
Λ2 = 0.4 GeV2.

For Aeff , which includes the effect of nuclear shadowing, the parameterization
[4]

Aeff = 0.22A+ 0.78A0.89 (13.18)

is chosen.

A reasonable choice for the photonuclear cross section, σγN , is the parame-
terization obtained by Caldwell et al. [5] based on the experimental data on
photoproduction by real photons:

σγN = (49.2 + 11.1 lnK + 151.8/
√
K) · 10−30cm2 K in GeV. (13.19)

The upper limit of the transferred energy is taken to be νmax = E−M/2. The
choice of the lower limit νmin is less certain since the formula 13.15, 13.16,
13.17 is not valid in this domain. Fortunately, νmin influences the total cross
section only logarithmically and has no practical effect on the average energy
loss for high energy muons. Hence, a reasonable choice for νmin is 0.2 GeV.

In Eq. 13.16, Aeff and σγN appear as factors. A more rigorous theoretical
approach may lead to some dependence of the shadowing effect on ν and E;
therefore in the differential cross section and in the sampling procedure, this
possibility is forseen and the atomic weight A of the element is kept as an
explicit parameter.

The total cross section is obtained by integration of Eq. 13.15 between νmin

and νmax; to facilitate the computation, a ln(ν)–substitution is used.

13.4.2 Sampling

Sampling the Transferred Energy

The muon photonuclear interaction is always treated as a discrete process
with its mean free path determined by the total cross section. The total
cross section is obtained by the numerical integration of Eq. 13.15 within the
limits νmin and νmax. The process is considered for muon energies 1GeV ≤
T ≤ 1000PeV, though it should be noted that above 100 TeV the extrapola-
tion (Eq. 13.19) of σγN may be too crude.
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The random transferred energy, νp, is found from the numerical solution of
the equation :

P =

∫ νmax

νp

σ(E, ν)dν

/
∫ νmax

νmin

σ(E, ν)dν . (13.20)

Here P is the random uniform probability, with νmax = E − M/2 and
νmin = 0.2 GeV.

For fast sampling, the solution of Eq. 13.20 is tabulated at initialization time.
During simulation, the sampling method returns a value of νp corresponding
to the probability P , by interpolating the table. The tabulation routine uses
Eq. 13.15 for the differential cross section. The table contains values of

xp = ln(νp/νmax)/ ln(νmax/νmin), (13.21)

calculated at each point on a three-dimensional grid with constant spacings in
ln(T ), ln(A) and ln(P ) . The sampling uses linear interpolations in ln(T ) and
ln(A), and a cubic interpolation in ln(P ). Then the transferred energy is cal-
culated from the inverse transformation of Eq. 13.21, νp = νmax(νmax/νmin)

xp.
Tabulated parameters reproduce the theoretical dependence to better than
2% for T > 1 GeV and better than 1% for T > 10 GeV.

Sampling the Muon Scattering Angle

According to Refs. [1, 6], in the region where the four-momentum transfer is
not very large (Q2 ≤ 3GeV2), the t – dependence of the cross section may
be described as:

dσ

dt
∼ (1 − t/tmax)

t(1 + t/ν2)(1 + t/m2
0)

[(1 − y)(1− tmin/t) + y2/2], (13.22)

where t is the square of the four-momentum transfer, Q2 = 2(EE ′−PP ′ cos θ−
µ2). Also, tmin = (µy)2/(1 − y), y = ν/E and tmax = 2Mν. ν = E − E ′ is
the energy lost by the muon and E is the total initial muon energy. M is
the nucleon (proton) mass and m2

0 ≡ Λ2 ≃ 0.4 GeV2 is a phenomenological
parameter determing the behavior of the inelastic form factor. Factors which
depend weakly, or not at all, on t are omitted.

To simulate random t and hence the random muon deflection angle, it is
convenient to represent Eq. 13.22 in the form :

σ(t) ∼ f(t)g(t), (13.23)
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where

f(t) =
1

t(1 + t/t1)
, (13.24)

g(t) =
1 − t/tmax

1 + t/t2
· (1 − y)(1 − tmin/t) + y2/2

(1 − y) + y2/2
,

and
t1 = min(ν2, m2

0) t2 = max(ν2, m2
0). (13.25)

tP is found analytically from Eq. 13.24 :

tP =
tmaxt1

(tmax + t1)

[

tmax(tmin + t1)

tmin(tmax + t1)

]P

− tmax

,

where P is a random uniform number between 0 and 1, which is accepted
with probability g(t). The conditions of Eq. 13.25 make use of the symmetry
between ν2 andm2

0 in Eq. 13.22 and allow increased selection efficiency, which
is typically ≥ 0.7. The polar muon deflection angle θ can easily be found
from 1

sin2(θ/2) =
tP − tmin

4 (EE ′ − µ2) − 2 tmin
.

The hadronic vertex is generated by the hadronic processes taking into ac-
count the four-momentum transfer.

13.4.3 Status of this document

12.10.98 created by R.Kokoulin, A.Rybin.
18.05.00 edited by S.Kelner, R.Kokoulin, and A.Rybin.
07.12.02 re-worded by D.H. Wright
30.08.04 correction of eq. 8.24 (to 1/sqrt) from H. Araujo
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Atomic Relaxation
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14.1 Atomic relaxation

Atomic relaxation processes can be induced by any ionisation process that
leaves the interested atom in an excited state (i.e. with a vacancy in its
electronic structure). Processes inducing atomic relaxation in Geant4 are
photoelectric effect, Compton and ionization (both Standard and Lowen-
ergy).

Geant4 uses the Livermore Evaluation Atomic Data Library EADL [1],
that contains data to describe the relaxation of atoms back to neutrality after
they are ionised.

It is assumed that the binding energy of all subshells (from now on shells
are the same for neutral ground state atoms as for ionised atoms [1]).

Data in EADL includes the radiative and non-radiative transition prob-
abilities for each sub-shell of each element, for Z=1 to 100. The atom has
been ionised by a process that has caused an electron to be ejected from an
atom, leaving a vacancy or “hole” in a given subshell. The EADL data are
then used to calculate the complete radiative and non-radiative spectrum of
X-rays and electrons emitted as the atom relaxes back to neutrality.

Non-radiative de-excitation can occur via the Auger effect (the initial and
secondary vacancies are in different shells) or Coster-Kronig effect (transi-
tions within the same shell).

14.1.1 Fluorescence

The simulation procedure for the fluorescence process is the following:

1. If the vacancy shell is not included in the data, energy equal to the
binding energy of the shell is deposited locally

2. If the vacancy subshell is included in the data, an outer subshell is ran-
domly selected taking into account the relative transition probabilities
for all possible outer subshells.

3. In the case where the energy corresponding to the selected transition is
larger than a user defined cut value (equal to zero by default), a photon
particle is created and emitted in a random direction in 4π, with an
energy equal to the transition energy, provided by EADL.

4. the procedure is repeated from step 1, for the new vacancy subshell.

The final local energy deposit is the difference between the binding energy
of the initial vacancy subshell and the sum of all transition energies which
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were taken by fluorescence photons. The atom is assumed to be initially
ionised with an electric charge of +1e.

Sub-shell data are provided in the EADL data bank [1] for Z=1 through
100. However, transition probabilities are only explicitly included for Z=6
through 100, from the subshells of the K, L, M, N shells and some O sub-
shells. For subshells O,P,Q: transition probabilities are negligible (of the
order of 0.1%) and smaller than the precision with which they are known.
Therefore, for the time being, for Z=1 through 5, only a local energy deposit
corresponding to the binding energy B of an electron in the ionised subshell
is simulated. For subshells of the O, P, and Q shells, a photon is emitted
with that energy B.

14.1.2 Auger process

The Auger effect is complimentary to fluorescence, hence the simulation pro-
cess is the same as for the fluorescence, with the exception that two random
shells are selected, one for the transition electron that fills the original va-
cancy, and the other for selecting the shell generating the Auger electron.

Subshell data are provided in the EADL data bank [1] for Z = 6 through
100. Since in EADL no data for elements with Z < 5 are provided, Auger
effects are only considered for 5 < Z < 100 and always due to the EADL data
tables, only for those transitions which have a probabiliy to occur > 0.1% of
the total non-radiative transition probability. EADL probability data used
are, however, normalized to one for Fluorescence + Auger.

14.1.3 PIXE

PIXE (Particle Induced X-Ray Emission) can be simulated for ionisation
continuous processes perfomed by ions. Ionised shells are selected randomly
according the ionisation cross section of each shell once known the (continu-
ous) energy loss along the step 7.1.

Different shell ionisation cross sections models are available in different
energy ranges:

• ECPSSR[2],[3] internal Geant4 calculation for K and L shells.

• ECPSSR calculations from Factor Form according to Reis[4] for K and
L shells from 0.1 to 100 MeV and for M shells from 0.1 to 10 MeV.

• empirical “reference” K-shell values from Paul for protons[5] and for
for alphas[6]. Energies ranges are 0.1 - 10 MeV/amu circa, depending
on the atomic number that varies between 4 and 32.
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• empirical Li-shell values from Orlic[7]. Energy Range 0.1-10 MeV for
Z between 41 and 92.

Otside Z and energy of limited shell ionisation cross sections, the ECPSSR
internal calculation method is applied.

Please refer to ref.[8] and original papers to have detailed information of
every model.

14.1.4 Status of the document

08.02.2000 created by Véronique Lefébure
08.03.2000 reviewed by Petteri Nieminen and Maria Grazia Pia
05.06.2002 added Auger Effect description by Alfonso Mantero
27.11.2002 slight review and added PIXE section by Alfonso Mantero
12.11.2012 energy ranges and shell updates by Alfonso Mantero
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Geant4-DNA
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15.1 Geant4-DNA processes and models

The Geant4-DNA processes and models (theoretical, semi-empirical) are
adapted for track structure simulations in liquid water down to the eV scale.
They are described on a dedicated web site: http://geant4-dna.org, which
includes a full list of publications.

Any report or published results obtained using the Geant4-DNA software
shall cite the following publication : Comparison of Geant4 very low energy
cross section models with experimental data in water, S. Incerti et al., Med.
Phys. 37 (2010) 4692-4708

15.1.1 Status of the document

12.11.2012 created by Sebastien Incerti
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Microelectronics
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16.1 The MicroElec1 extension for microelec-

tronics applications

The Geant4-MicroElec extension [1], developed by CEA, aims at modeling
the effect of ionizing radiation in highly integrated microelectronic compo-
nents. It describes the transport and generation of very low energy electrons
by incident electrons, protons and heavy ions in silicon.

All Geant4-MicroElec physics processes and models simulate step-by-step
interactions of particles in silicon down to the eV scale; they are pure discrete
processes. Table 16.1 summarizes the list of physical interactions per particle
type that can be modeled using the Geant4-MicroElec extension, along with
the corresponding process classes, model classes, low energy limit applica-
bility of models, high energy applicability of models and energy threshold
below which the incident particle is killed (stopped and the kinetic energy is
locally deposited). All models are interpolated. For now, they are valid for
silicon only (use the G4 Si Geant4-NIST material).

Particle Interaction Process, Model, Range Kill

Electron Elastic scattering G4MicroElastic 16.7 eV (*)
G4MicroElecElasticModel

5 eV < E < 100 MeV
Electron Ionisation G4MicroElecInelastic —

G4MicroElecInelasticModel

16.7 eV < E < 100 MeV
Protons, ions Ionisation G4MicroElecInelastic —

G4MicroElecInelasticModel

50 keV/u < E < 23 MeV/u
(*) because of the low energy limit applicability of the inelastic model.

Table 16.1: List of G4MicroElec physical interactions

All details regarding the physics and formula used for these processes
and models and available in [2] for incident electrons and in [3] for incident
protons and heavy ions.

1Previously called MuElec.

246



16.1.1 Status of the document

12.11.2012 created by Melanie Raine
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17.1 Introduction

With the EM polarization extension it is possible to track polarized par-
ticles (leptons and photons). Special emphasis will be put in the proper
treatment of polarized matter and its interaction with longitudinal polarized
electrons/positrons or circularly polarized photons, which is for instance es-
sential for the simulation of positron polarimetry. The implementation is
base on Stokes vectors [1]. Further details can be found in [2].

In its current state, the following polarization dependent processes are
considered

• Bhabha/Møller scattering,

• Positron Annihilation,

• Compton scattering,

• Pair creation,

• Bremsstrahlung.

Several simulation packages for the realistic description of the develop-
ment of electromagnetic showers in matter have been developed. A prominent
example of such codes is EGS (Electron Gamma Shower)[3]. For this simu-
lation framework extensions with the treatment of polarized particles exist
[4, 5, 6]; the most complete has been developed by K. Flöttmann [4]. It is
based on the matrix formalism [1], which enables a very general treatment of
polarization. However, the Flöttmann extension concentrates on evaluation
of polarization transfer, i.e. the effects of polarization induced asymmetries
are neglected, and interactions with polarized media are not considered.

Another important simulation tool for detector studies is Geant3 [7].
Here also some effort has been made to include polarization [8, 9], but these
extensions are not publicly available.

In general the implementation of polarization in this EM polarization
library follows very closely the approach by K. Flöttmann [4]. The basic
principle is to associate a Stokes vector to each particle and track the mean
polarization from one interaction to another. The basics for this approach is
the matrix formalism as introduced in [1].

17.1.1 Stokes vector

The Stokes vector [10, 1] is a rather simple object (in comparison to e.g. the
spin density matrix), three real numbers are sufficient for the characterization
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of the polarization state of any single electron, positron or photon. Using
Stokes vectors all possible polarization states can be described, i.e. circular
and linear polarized photons can be handled with the same formalism as
longitudinal and transverse polarized electron/positrons.

The Stokes vector can be used also for beams, in the sense that it defines
a mean polarization.

In the EM polarization library the Stokes vector is defined as follows:

Photons Electrons

ξ1 linear polarization polarization in x direction

ξ2 linear polarization but π/4 to right polarization in y direction

ξ3 circular polarization polarization in z direction

This definition is assumed in the particle reference frame, i.e. with the mo-
mentum of the particle pointing to the z direction, cf. also next section about
coordinate transformations. Correspondingly a 100% longitudinally polar-
ized electron or positron is characterized by

ξ =

0

B

B

B

B

B

@

0
0
±1

1

C

C

C

C

C

A

, (17.1)

where ±1 corresponds to spin parallel (anti parallel) to particle’s momentum.
Note that this definition is similar, but not identical to the definition used
in McMaster [1].

Many scattering cross sections of polarized processes using Stokes vectors
for the characterization of initial and final states are available in [1]. In
general a differential cross section has the form

dσ(ζ(1), ζ(2), ξ(1), ξ(2))

dΩ
, (17.2)

i.e. it is a function of the polarization states of the initial particles ζ(1) and
ζ(2), as well as of the polarization states of the final state particles ξ(1) and
ξ(2) (in addition to the kinematic variables E, θ, and φ).

Consequently, in a simulation we have to account for

• Asymmetries:

Polarization of beam (ζ(1)) and target (ζ(2)) can induce azimuthal and
polar asymmetries, and may also influence on the total cross section
(Geant4: GetMeanFreePath()).
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• Polarization transfer / depolarization effects

The dependence on the final state polarizations defines a possible trans-
fer from initial polarization to final state particles.

17.1.2 Transfer matrix

Using the formalism of McMaster, differential cross section and polarization
transfer from the initial state (ζ(1)) to one final state particle (ξ(1)) are com-
bined in an interaction matrix T :

(

O

ξ(1)

)

= T

(

I

ζ(1)

)

, (17.3)

where I and O are the incoming and outgoing currents, respectively. In
general the 4 × 4 matrix T depends on the target polarization ζ(2) (and of
course on the kinematic variables E, θ, φ). Similarly one can define a matrix
defining the polarization transfer to second final state particle like

(

O

ξ(2)

)

= T ′
(

I

ζ(1)

)

. (17.4)

In this framework the transfer matrix T is of the form

T =









S A1 A2 A3

P1 M11 M21 M31

P2 M12 M22 M32

P3 M13 M23 M33









. (17.5)

The matrix elements Tij can be identified as (unpolarized) differential cross
section (S), polarized differential cross section (Aj), polarization transfer
(Mij), and (de)polarization (Pi). In the Flöttmann extension the elements
Aj and Pi have been neglected, thus concentrating on polarization transfer
only. Using the full matrix takes now all polarization effects into account.

The transformation matrix, i.e. the dependence of the mean polarization
of final state particles, can be derived from the asymmetry of the differential
cross section w.r.t. this particular polarization. Where the asymmetry is
defined as usual by

A =
σ(+1) − σ(−1)

σ(+1) + σ(−1)
. (17.6)

The mean final state polarizations can be determined coefficient by coeffi-
cient.
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In general, the differential cross section is a linear function of the polar-
izations, i.e.

dσ(ζ(1), ζ(2), ξ(1), ξ(2))

dΩ
= Φ(ζ(1),ζ(2)) + A(ζ(1),ζ(2)) · ξ(1) + B(ζ(1),ζ(2)) · ξ(2)

+ ξ(1)TM(ζ(1),ζ(2)) ξ(2) (17.7)

In this form, the mean polarization of the final state can be read off easily,
and one obtains

〈ξ(1)〉 =
1

Φ(ζ(1),ζ(2))

A(ζ(1),ζ(2)) and (17.8)

〈ξ(2)〉 =
1

Φ(ζ(1),ζ(2))

B(ζ(1),ζ(2)) . (17.9)

Note, that the mean polarization states do not depend on the correlation
matrix M(ζ(1),ζ(2)). In order to account for correlation one has to generate
single particle Stokes vector explicitly, i.e. on an event by event basis. How-
ever, this implementation generates mean polarization states, and neglects
correlation effects.

17.1.3 Coordinate transformations

Three different coordinate systems are used in the evaluation of polarization
states:

• World frame

The geometry of the target, and the momenta of all particles in Geant4
are noted in the world frameX, Y , Z (the global reference frame, GRF).
It is the basis of the calculation of any other coordinate system.

• Particle frame

Each particle is carrying its own coordinate system. In this system
the direction of motion coincides with the z-direction. Geant4 provides
a transformation from any particle frame to the World frame by the
method G4ThreeMomemtum::rotateUz(). Thus, the y-axis of the par-
ticle reference frame (PRF) lies in the X-Y -plane of the world frame.

The Stokes vector of any moving particle is defined w.r.t. the corre-
sponding particle frame. Particles at rest (e.g. electrons of a media)
use the world frame as particle frame.
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Figure 17.1: The interaction frame and the particle frames for the exam-
ple of Compton scattering. The momenta of all participating particle lie in
the x-z-plane, the scattering plane. The incoming photon gives the z direc-
tion. The outgoing photon is defined as particle 1 and gives the x-direction,
perpendicular to the z-axis. The y-axis is then perpendicular to the scatter-
ing plane and completes the definition of a right handed coordinate system
called interaction frame. The particle frame is defined by the Geant4 routine
G4ThreeMomemtum::rotateUz().

• Interaction frame

For the evaluation of the polarization transfer another coordinate sys-
tem is used, defined by the scattering plane, cf. fig. 17.1. There the
z-axis is defined by the direction of motion of the incoming particle.
The scattering plane is spanned by the z-axis and the x-axis, in a way,
that the direction of particle 1 has a positive x component. The def-
inition of particle 1 depends on the process, for instance in Compton
scattering, the outgoing photon is referred as particle 11.

All frames are right handed.

17.1.4 Polarized beam and material

Polarization of beam particles is well established. It can be used for simulat-
ing low-energy Compton scattering of linear polarized photons. The inter-
pretation as Stokes vector allows now the usage in a more general framework.
The polarization state of a (initial) beam particle can be fixed using standard

1Note, for an incoming particle travelling on the Z-axis (of GRF), the y-axis of the
PRF of both outgoing particles is parallel to the y-axis of the interaction frame.
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the ParticleGunMessenger class. For example, the class G4ParticleGun pro-
vides the method SetParticlePolarization(), which is usually accessable
via

/gun/polarization <Sx> <Sy> <Sz>

in a macro file.
In addition for the simulation of polarized media, a possibility to assign

Stokes vectors to physical volumes is provided by a new class, the so-called
G4PolarizationManager. The procedure to assign a polarization vector to a
media, is done during the detector construction. There the logical volumes
with certain polarization are made known to polarization manager. One
example DetectorConstruction might look like follows:

G4double Targetthickness = .010*mm;

G4double Targetradius = 2.5*mm;

G4Tubs *solidTarget =

new G4Tubs("solidTarget",

0.0,

Targetradius,

Targetthickness/2,

0.0*deg,

360.0*deg );

G4LogicalVolume * logicalTarget =

new G4LogicalVolume(solidTarget,

iron,

"logicalTarget",

0,0,0);

G4VPhysicalVolume * physicalTarget =

new G4PVPlacement(0,G4ThreeVector(0.*mm, 0.*mm, 0.*mm),

logicalTarget,

"physicalTarget",

worldLogical,

false,

0);

G4PolarizationManager * polMgr = G4PolarizationManager::GetInstance();

polMgr->SetVolumePolarization(logicalTarget,G4ThreeVector(0.,0.,0.08));
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Once a logical volume is known to the G4PolarizationManager, its polariza-
tion vector can be accessed from a macro file by its name, e.g. the polarization
of the logical volume called “logicalTarget” can be changed via

/polarization/volume/set logicalTarget 0. 0. -0.08

Note, the polarization of a material is stated in the world frame.

17.1.5 Status of this document

20.11.06 created by A.Schälicke
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17.2 Ionization

17.2.1 Method

The class G4ePolarizedIonization provides continuous and discrete energy
losses of polarized electrons and positrons in a material. It evaluates po-
larization transfer and – if the material is polarized – asymmetries in the
explicit delta rays production. The implementation baseline follows the ap-
proach derived for the class G4eIonization described in sections 7.1 and 8.1.
For continuous energy losses the effects of a polarized beam or target are
negligible provided the separation cut Tcut is small, and are therefore not
considered separately. On the other hand, in the explicit production of delta
rays by Møller or Bhabha scattering, the effects of polarization on total cross
section and mean free path, on distribution of final state particles and the
average polarization of final state particles are taken into account.

17.2.2 Total cross section and mean free path

Kinematics of Bhabha and Møller scattering is fixed by initial energy

γ =
Ek1

mc2
(17.10)

and variable

ǫ =
Ep2 −mc2

Ek1 −mc2
, (17.11)

which is the part of kinetic energy of initial particle carried out by scatter.
Lower kinematic limit for ǫ is 0, but in order to avoid divergencies in both
total and differential cross sections one sets

ǫmin = x =
Tmin

Ek1 −mc2
, (17.12)

where Tmin has meaning of minimal kinetic energy of secondary electron.
And, ǫmax = 1(1/2) for Bhabha(Møller) scatterings.

Total Møller cross section

The total cross section of the polarized Møller scattering can be expressed
as follows

σM
pol =

2πγ2r2
e

(γ − 1)2(γ + 1)

[

σM
0 + ζ

(1)
3 ζ

(2)
3 σM

L +
(

ζ
(1)
1 ζ

(2)
1 + ζ

(1)
2 ζ

(2)
2

)

σM
T

]

,

(17.13)
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where the re is classical electron radius, and

σM
0 = − 1

1 − x
+

1

x
− (γ − 1)2

γ2

(

1

2
− x

)

+
2 − 4 γ

2 γ2
ln

(

1 − x

x

)

σM
L =

(−3 + 2 γ + γ2) (1 − 2 x)

2 γ2
+

2 γ (−1 + 2 γ)

2 γ2
ln

(

1 − x

x

)

σM
T =

2 (γ − 1) (2 x− 1)

2 γ2
+

(1 − 3 γ)

2 γ2
ln

(

1 − x

x

)

(17.14)

Total Bhabha cross section

The total cross section of the polarized Bhabha scattering can be expressed
as follows

σB
pol =

2πr2
e

γ − 1

[

σB
0 + ζ

(1)
3 ζ

(2)
3 σB

L +
(

ζ
(1)
1 ζ

(2)
1 + ζ

(1)
2 ζ

(2)
2

)

σB
T

]

, (17.15)

where

σB
0 =

1 − x

2 (γ − 1) x
+

2 (−1 + 3 x− 6 x2 + 4 x3)

3 (1 + γ)3

+
−1 − 5 x+ 12 x2 − 10 x3 + 4 x4

2 (1 + γ) x
+

−3 − x+ 8 x2 − 4 x3 − ln(x)

(1 + γ)2

+
3 + 4 x− 9 x2 + 3 x3 − x4 + 6 x ln(x)

3 x

σB
L =

2 (1 − 3 x+ 6 x2 − 4 x3)

3 (1 + γ)3 +
−14 + 15 x− 3 x2 + 2 x3 − 9 ln(x)

3 (1 + γ)

+
5 + 3 x− 12 x2 + 4 x3 + 3 ln(x)

3 (1 + γ)2 +
7 − 9 x+ 3 x2 − x3 + 6 ln(x)

3

σB
T =

2 (−1 + 3 x− 6 x2 + 4 x3)

3 (1 + γ)3 +
−7 − 3 x+ 18 x2 − 8 x3 − 3 ln(x)

3 (1 + γ)2

+
5 + 3 x− 12 x2 + 4 x3 + 9 ln(x)

6 (1 + γ)
(17.16)

Mean free path

With the help of the total polarized Møller cross section one can define a
longitudinal asymmetry AM

L and the transverse asymmetry AM
T , by

AM
L =

σM
L

σM
0

and AM
T =

σM
T

σM
0

.
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Similarly, using the polarized Bhabha cross section one can introduce a
longitudinal asymmetry AB

L and the transverse asymmetry AB
T via

AB
L =

σB
L

σB
0

and AB
T =

σB
T

σB
0

.

These asymmetries are depicted in figures 17.2 and 17.3 respectively.
If both beam and target are polarized the mean free path as defined

in section 8.1 has to be modified. In the class G4ePolarizedIonization the
polarized mean free path λpol is derived from the unpolarized mean free path
λunpol via

λpol =
λunpol

1 + ζ
(1)
3 ζ

(2)
3 AL +

(

ζ
(1)
1 ζ

(2)
1 + ζ

(1)
2 ζ

(2)
2

)

AT

(17.17)

17.2.3 Sampling the final state

Differential cross section

The polarized differential cross section is rather complicated, the full result
can be found in [1, 2, 3]. In G4PolarizedMollerCrossSection the complete
result is available taking all mass effects into account, only binding effects
are neglected. Here we state only the ultra-relativistic approximation (URA),
to show the general dependencies.

dσM
URA

dǫdϕ
=

rǫ
2

γ + 1
×

[

(1 − ǫ+ ǫ2)
2

4 (ǫ− 1)2 ǫ2
+ ζ

(1)
3 ζ

(2)
3

2 − ǫ+ ǫ2

−4 ǫ(1 − ǫ)
+
(

ζ
(1)
2 ζ

(2)
2 − ζ

(1)
1 ζ

(2)
1

) 1

4

+
(

ξ
(1)
3 ζ

(1)
3 − ξ

(2)
3 ζ

(2)
3

) 1 − ǫ+ 2 ǫ2

4 (1 − ǫ) ǫ2
+
(

ξ
(2)
3 ζ

(1)
3 − ξ

(1)
3 ζ

(2)
3

) 2 − 3 ǫ+ 2 ǫ2

4 (1 − ǫ)2 ǫ

]

(17.18)

The corresponding cross section for Bhabha cross section is implemented in
G4PolarizedBhabhaCrossSection. In the ultra-relativistic approximation it
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Figure 17.2: Møller total cross section asymmetries depending on the total
energy of the incoming electron, with a cut-off Tcut = 1keV. Transverse
asymmetry is plotted in blue, longitudinal asymmetry in red. Left part,
between 0.5 MeV and 2 MeV, right part up to 10 MeV.
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Figure 17.3: Bhabha total cross section asymmetries depending on the total
energy of the incoming positron, with a cut-off Tcut = 1keV. Transverse
asymmetry is plotted in blue, longitudinal asymmetry in red. Left part,
between 0.5 MeV and 2 MeV, right part up to 10 MeV.

reads

dσB
URA

dǫdϕ
=

rǫ
2

γ − 1
×

[

(1 − ǫ+ ǫ2)
2

4 ǫ2
+ ζ

(1)
3 ζ

(2)
3

(ǫ− 1) (2 − ǫ+ ǫ2)

4 ǫ
+
(

ζ
(1)
2 ζ

(2)
2 − ζ

(1)
1 ζ

(2)
1

) (1 − ǫ)2

4

+
(

ξ
(1)
3 ζ

(1)
3 − ξ

(2)
3 ζ

(2)
3

) 1 − 2 ǫ+ 3 ǫ2 − 2 ǫ3

4 ǫ2
+
(

ξ
(2)
3 ζ

(1)
3 − ξ

(1)
3 ζ

(2)
3

) 2 − 3 ǫ+ 2 ǫ2

4ǫ

]

(17.19)
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where re = classical electron radius
γ = Ek1/mec

2

ǫ = (Ep1 −mec
2)/(Ek1 −mec

2)
Ek1 = energy of the incident electron/positron
Ep1 = energy of the scattered electron/positron
mec

2 = electron mass

ζ(1) = Stokes vector of the incoming electron/positron

ζ(2) = Stokes vector of the target electron

ξ(1) = Stokes vector of the outgoing electron/positron

ξ(2) = Stokes vector of the outgoing (2nd) electron .

Sampling

The delta ray is sampled according to methods discussed in Chapter 2. After
exploitation of the symmetry in the Møller cross section under exchanging ǫ
versus (1− ǫ), the differential cross section can be approximated by a simple
function fM(ǫ):

fM(ǫ) =
1

ǫ2
ǫ0

1 − 2ǫ0
(17.20)

with the kinematic limits given by

ǫ0 =
Tcut

Ek1 −mec2
≤ ǫ ≤ 1

2
(17.21)

A similar function fB(ǫ) can be found for Bhabha scattering:

fB(ǫ) =
1

ǫ2
ǫ0

1 − ǫ0
(17.22)

with the kinematic limits given by

ǫ0 =
Tcut

Ek1 −mec2
≤ ǫ ≤ 1 (17.23)

The kinematic of the delta ray production is constructed by the following
steps:

1. ǫ is sampled from f(ǫ)

2. calculate the differential cross section, depending on the initial polar-
izations ζ(1) and ζ(2).

3. ǫ is accepted with the probability defined by ratio of the differential
cross section over the approximation function.

260



4. The ϕ is diced uniformly.

5. ϕ is determined from the differential cross section, depending on the
initial polarizations ζ(1) and ζ(2)

Note, for initial states without transverse polarization components, the ϕ
distribution is always uniform. In figure 17.4 the asymmetries indicate the
influence of polarization. In general the effect is largest around ǫ = 1

2
.
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Figure 17.4: Differential cross section asymmetries in% for Møller (left) and
Bhabha (right) scattering ( red - AZZ(ǫ), green - AXX(ǫ), blue - AY Y (ǫ),
lightblue - AZX(ǫ))

After both φ and ǫ are known, the kinematic can be constructed fully.
Using momentum conservation the momenta of the scattered incident particle
and the ejected electron are constructed in global coordinate system.

Polarization transfer

After the kinematics is fixed the polarization properties of the outgoing par-
ticles are determined. Using the dependence of the differential cross section
on the final state polarization a mean polarization is calculated according to
method described in section 17.1.

The resulting polarization transfer functions ξ
(1,2)
3 (ǫ) are depicted in fig-

ures 17.5 and 17.6.

17.2.4 Status of this document

20.11.06 created by P.Starovoitov
21.02.07 minor update by A.Schälicke
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Figure 17.5: Polarization transfer functions in Møller scattering. Longitu-
dinal polarization ξ

(2)
3 of electron with energy Ep2 in blue; longitudinal po-

larization ξ
(1)
3 of second electron in red. Kinetic energy of incoming electron

Tk1 = 10MeV
.
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Figure 17.6: Polarization Transfer in Bhabha scattering. Longitudinal po-
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3 of scattered positron. Kinetic energy of incoming positron Tk1 = 10MeV
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17.3 Positron - Electron Annihilation

17.3.1 Method

The class G4eplusPolarizedAnnihilation simulates annihilation of polarized
positrons with electrons in a material. The implementation baseline follows
the approach derived for the class G4eplusAnnihilation described in section
8.3. It evaluates polarization transfer and – if the material is polarized –
asymmetries in the produced photons. Thus, it takes the effects of polar-
ization on total cross section and mean free path, on distribution of final
state photons into account. And calculates the average polarization of these
generated photons. The material electrons are assumed to be free and at
rest.

17.3.2 Total cross section and mean free path

Kinematics of annihilation process is fixed by initial energy

γ =
Ek1

mc2
(17.24)

and variable

ǫ =
Ep1

Ek1 +mc2
, (17.25)

which is the part of total energy available in initial state carried out by first
photon. This variable has the following kinematical limits

1

2

(

1 −
√

γ − 1

γ + 1

)

< ǫ <
1

2

(

1 +

√

γ − 1

γ + 1

)

. (17.26)

Total Cross Section

The total cross section of the annihilation of a polarized e+e− pair into two
photons could be expressed as follows

σA
pol =

πr2
e

γ + 1

[

σA
0 + ζ

(1)
3 ζ

(2)
3 σA

L +
(

ζ
(1)
1 ζ

(2)
1 + ζ

(1)
2 ζ

(2)
2

)

σA
T

]

, (17.27)

where

σA
0 =

− (3 + γ)
√

−1 + γ2 + (1 + γ (4 + γ)) ln(γ +
√

−1 + γ2)

4 (γ2 − 1)
(17.28)
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σA
L =

−
√

−1 + γ2 (5 + γ (4 + 3 γ)) + (3 + γ (7 + γ + γ2)) ln(γ +
√

γ2 − 1)

4 (γ − 1)2 (1 + γ)
(17.29)

σA
T =

(5 + γ)
√

−1 + γ2 − (1 + 5 γ) ln(γ +
√

−1 + γ2)

4 (−1 + γ)2 (1 + γ)
(17.30)

Mean free path

With the help of the total polarized annihilation cross section one can define
a longitudinal asymmetry AA

L and the transverse asymmetry AA
T , by

AA
L =

σA
L

σA
0

and AA
T =

σA
T

σA
0

.

These asymmetries are depicted in figure 17.7.
If both incident positron and target electron are polarized the mean free

path as defined in section 8.3 has to be modified. The polarized mean free
path λpol is derived from the unpolarized mean free path λunpol via

λpol =
λunpol

1 + ζ
(1)
3 ζ

(2)
3 AL +

(

ζ
(1)
1 ζ

(2)
1 + ζ

(1)
2 ζ

(2)
2

)

AT

(17.31)
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Figure 17.7: Annihilation total cross section asymmetries depending on the
total energy of the incoming positron Ek1 . The transverse asymmetry is
shown in blue, the longitudinal asymmetry in red.
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17.3.3 Sampling the final state

Differential Cross Section

The fully polarized differential cross section is implemented in the class
G4PolarizedAnnihilationCrossSection, which takes all mass effects into ac-
count, but binding effects are neglected [1, 2]. In the ultra-relativistic ap-
proximation (URA) and concentrating on longitudinal polarization states
only the cross section is rather simple:

dσA
URA

dǫdϕ
=

re
2

γ − 1
×
(

1 − 2 ǫ+ 2 ǫ2

8 ǫ− 8 ǫ2

(

1 + ζ
(1)
3 ζ

(2)
3

)

+
(1 − 2 ǫ)

(

ζ
(1)
3 + ζ

(2)
3

) (

ξ
(1)
3 − ξ

(2)
3

)

8 (ǫ− 1) ǫ

)

(17.32)

where re = classical electron radius
γ = Ek1/mec

2

Ek1 = energy of the incident positron
mec

2 = electron mass

ζ(1) = Stokes vector of the incoming positron

ζ(2) = Stokes vector of the target electron

ξ(1) = Stokes vector of the 1st photon

ξ(2) = Stokes vector of the 2nd photon .

Sampling

The photon energy is sampled according to methods discussed in Chapter 2.
After exploitation of the symmetry in the Annihilation cross section under
exchanging ǫ versus (1−ǫ), the differential cross section can be approximated
by a simple function f(ǫ):

f(ǫ) =
1

ǫ
ln−1

(

ǫmax

ǫmin

)

(17.33)

with the kinematic limits given by

ǫmin =
1

2

(

1 −
√

γ − 1

γ + 1

)

,

ǫmax =
1

2

(

1 +

√

γ − 1

γ + 1

)

. (17.34)

The kinematic of the two photon final state is constructed by the following
steps:
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Figure 17.8: Annihilation differential cross section in arbitrary units. Black
line corresponds to unpolarized cross section; red line – to the antiparallel
spins of initial particles, and blue line – to the parallel spins. Kinetic energy
of the incoming positron Tk1 = 10MeV.

1. ǫ is sampled from f(ǫ)

2. calculate the differential cross section, depending on the initial polar-
izations ζ(1) and ζ(2).

3. ǫ is accepted with the probability defined by the ratio of the differential
cross section over the approximation function f(ǫ).

4. The ϕ is diced uniformly.

5. ϕ is determined from the differential cross section, depending on the
initial polarizations ζ(1) and ζ(2).

A short overview over the sampling method is given in Chapter 2. In figure
17.9 the asymmetries indicate the influence of polarization for an 10MeV
incoming positron. The actual behavior is very sensitive to the energy of the
incoming positron.

Polarization transfer

After the kinematics is fixed the polarization of the outgoing photon is de-
termined. Using the dependence of the differential cross section on the final
state polarizations a mean polarization is calculated for each photon accord-
ing to method described in section 17.1.
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Figure 17.9: Annihilation differential cross section asymmetries in%. Red
line corrsponds to AZZ(ǫ), green line – AXX(ǫ), blue line – AY Y (ǫ), lightblue
line – AZX(ǫ)). Kinetic energy of the incoming positron Tk1 = 10MeV.

The resulting polarization transfer functions ξ(1,2)(ǫ) are depicted in figure
17.10.
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Figure 17.10: Polarization Transfer in annihilation process. Blue line corre-
sponds to the circular polarization ξ

(1)
3 of the photon with energy m(γ + 1)ǫ;

red line – circular polarization ξ
(2)
3 of the photon photon with energy

m(γ + 1)(1 − ǫ).

17.3.4 Annihilation at Rest

The method AtRestDoIt treats the special case where a positron comes to
rest before annihilating. It generates two photons, each with energy Ep1/2

=

mc2 and an isotropic angular distribution. Starting with the differential cross
section for annihilation with positron and electron spins opposed and parallel,
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respectively,[2]

dσ1 = ∼ (1 − β2) + β2(1 − β2)(1 − cos2 θ)2

(1 − β2 cos2 θ)2
d cos θ (17.35)

dσ2 = ∼ β2(1 − cos4 θ)

(1 − β2 cos2 θ)2
d cos θ (17.36)

In the limit β → 0 the cross section dσ1 becomes one, and the cross section
dσ2 vanishes. For the opposed spin state, the total angular momentum is
zero and we have a uniform photon distribution. For the parallel case the
total angular momentum is 1. Here the two photon final state is forbidden
by angular momentum conservation, and it can be assumed that higher order
processes (e.g. three photon final state) play a dominant role. However, in
reality 100% polarized electron targets do not exist, consequently there are
always electrons with opposite spin, where the positron can annihilate with.
Final state polarization does not play a role for the decay products of a spin
zero state, and can be safely neglected. (Is set to zero)

17.3.5 Status of this document

20.11.06 created by P.Starovoitov
21.02.07 minor update by A.Schälicke

Bibliography

[1] P. Starovoitov et.al., in preparation.

[2] L. A. Page, Phys. Rev. 106 (1957) 394-398.

268



17.4 Polarized Compton scattering

17.4.1 Method

The class G4PolarizedCompton simulates Compton scattering of polarized
photons with (possibly polarized) electrons in a material. The implementa-
tion follows the approach described for the class G4ComptonScattering in-
troduced in section 5.3. Here the explicit production of a Compton scattered
photon and the ejected electron is considered taking the effects of polariza-
tion on total cross section and mean free path as well as on the distribution
of final state particles into account. Further the average polarizations of
the scattered photon and electron are calculated. The material electrons are
assumed to be free and at rest.

17.4.2 Total cross section and mean free path

Kinematics of the Compton process is fixed by the initial energy

X =
Ek1

mc2
(17.37)

and the variable

ǫ =
Ep1

Ek1

, (17.38)

which is the part of total energy avaible in initial state carried out by scat-
tered photon, and the scattering angle

cos θ = 1 − 1

X

(

1

ǫ
− 1

)

(17.39)

The variable ǫ has the following limits:

1

1 + 2X
< ǫ < 1 (17.40)

Total Cross Section

The total cross section of Compton scattering reads

σC
pol =

π re
2

X2 (1 + 2X)2

[

σC
0 + ζ

(1)
3 ζ

(2)
3 σC

L

]

(17.41)

where

σC
0 =

2X (2 +X (1 +X) (8 +X)) − (1 + 2X)2 (2 + (2 −X) X) ln(1 + 2X)

X
(17.42)
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and

σC
L = 2X (1 +X (4 + 5X)) − (1 +X) (1 + 2X)2 ln(1 + 2X) (17.43)
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Figure 17.11: Compton total cross section asymmetry depending on the en-
ergy of incoming photon. Left part, between 0 and ∼ 1 MeV, right part –
up to 10MeV.

Mean free path

When simulating the Compton scattering of a photon with an atomic elec-
tron, an empirical cross section formula is used, which reproduces the cross
section data down to 10 keV (see section 5.3). If both, beam and target, are
polarized this mean free path has to be corrected.

In the class G4ComptonScattering the polarized mean free path λpol is
defined on the basis of the the unpolarized mean free path λunpol via

λpol =
λunpol

1 + ζ
(1)
3 ζ

(2)
3 AC

L

(17.44)

where

AC
L =

σA
L

σA
0

(17.45)

is the expected asymmetry from the the total polarized Compton cross sec-
tion given above. This asymmetry is depicted in figure 17.11.

17.4.3 Sampling the final state

Differential Compton Cross Section

In the ultra-relativistic approximation the dependence of the differential cross
section on the longitudinal/circular degree of polarization is very simple. It
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Figure 17.12: Compton scattering differential cross section in arbitrary units.
Black line corresponds to the unpolarized cross section; red line – to the
antiparallel spins of initial particles, and blue line – to the parallel spins.
Energy of the incoming photon Ek1 = 10MeV.

reads

dσC
URA

dedϕ
=
re

2

X

(

ǫ2 + 1

2 ǫ
+
ǫ2 − 1

2 ǫ

(

ζ
(1)
3 ζ

(2)
3 + ζ

(2)
3 ξ

(1)
3 − ζ

(1)
3 ξ

(2)
3

)

+
ǫ2 + 1

2 ǫ

(

ζ
(1)
3 ξ

(1)
3 − ζ

(2)
3 ξ

(2)
3

)

)

(17.46)

where re = classical electron radius
X = Ek1/mec

2

Ek1 = energy of the incident photon
mec

2 = electron mass
The fully polarized differential cross section is available in the class G4PolarizedComptonCrossSe

It takes all mass effects into account, but binding effects are neglected [1, 2].
The cross section dependence on ǫ for right handed circularly polarized pho-
tons and longitudinally polarized electrons is plotted in figure 17.12

Sampling

The photon energy is sampled according to methods discussed in Chapter 2.
The differential cross section can be approximated by a simple function Φ(ǫ):

Φ(ǫ) =
1

ǫ
+ ǫ (17.47)
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Figure 17.13: Compton scattering differential cross section asymmetries in%.
Red line corresponds to the asymmetry due to circular photon and longitudi-
nal electron initial state polarization, green line – due to circular photon and
transverse electron initial state polarization, blue line – due to linear photon
and transverse electron initial state polarization.

with the kinematic limits given by

ǫmin =
1

1 + 2X
(17.48)

ǫmax = 1 (17.49)

The kinematic of the scattered photon is constructed by the following
steps:

1. ǫ is sampled from Φ(ǫ)

2. calculate the differential cross section, depending on the initial polar-
izations ζ(1) and ζ(2), which the correct normalization.

3. ǫ is accepted with the probability defined by ratio of the differential
cross section over the approximation function.

4. The ϕ is diced uniformly.

5. ϕ is determined from the differential cross section, depending on the
initial polarizations ζ(1) and ζ(2).

In figure 17.13 the asymmetries indicate the influence of polarization for an
10MeV incoming positron. The actual behavior is very sensitive to energy of
the incoming positron.
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Polarization transfer

After the kinematics is fixed the polarization of the outgoing photon is de-
termined. Using the dependence of the differential cross section on the final
state polarizations a mean polarization is calculated for each photon accord-
ing to the method described in section 17.1.

The resulting polarization transfer functions ξ(1,2)(ǫ) are depicted in figure
17.14.

0.2 0.4 0.6 0.8 1
Ε

-1

-0.5

0.5

1

Γ: Circ=1, e-: POL=1

0.2 0.4 0.6 0.8 1
Ε

-1

-0.5

0.5

1

Γ: Circ=-1, e-: POL=0

Figure 17.14: Polarization Transfer in Compton scattering. Blue line corre-
sponds to the longitudinal polarization ξ

(2)
3 of the electron, red line – circular

polarization ξ
(1)
3 of the photon.
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17.5 Polarized Bremsstrahlung for electron

and positron

17.5.1 Method

The polarized version of Bremsstrahlung is based on the unpolarized cross
section. Energy loss, mean free path, and distribution of explicitly generated
final state particles are treated by the unpolarized version G4eBremsstrahlung.
For details consult section 8.2.

The remaining task is to attribute polarization vectors to the generated
final state particles, which is discussed in the following.

17.5.2 Polarization in gamma conversion and brems-
strahlung

Gamma conversion and bremsstrahlung are cross-symmetric processes (i.e.
the Feynman diagram for electron bremsstrahlung can be obtained from the
gamma conversion diagram by flipping the incoming photon and outgoing
positron lines) and their cross sections closely related. For both processes,
the interaction occurs in the field of the nucleus and the total and differential
cross section are polarization independent. Therefore, only the polarization
transfer from the polarized incoming particle to the outgoing particles is
taken into account.

e−

N1 N2

q

k
e− P−

P’−

N1 N2

k

q

P+

P−

e+

e−

Gamma conversion Bremsstrahlung

Figure 17.15: Feynman diagrams of Gamma conversion and bremsstrahlung
processes.

For both processes, the scattering can be formulated by:

K1(k1, ζ
(1)) + N1(kN1, ζ

(N1)) −→ P1(p1, ξ
(1)) + P2(p2, ξ

(2)) + N2(pN2, ξ
(N2))

(17.50)
Where N1(kN1, ζ

(N1)) and N2(pN2, ξ
(N2)) are the initial and final state of

the field of the nucleus respectively assumed to be unchanged, at rest and
unpolarized. This leads to kN1 = kN2 = 0 and ζ(N1) = ξ(N2) = 0
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In the case of gamma conversion process:
K1(k1, ζ

(1)) is the incoming photon initial state with momentum k1 and po-
larization state ζ(1).
P1(p1, ξ

(1)) and P2(p2, ξ
(2)) are the two photons final states with momenta

p1 and p2 and polarization states ξ(1) and ξ(2).
In the case of bremsstrahlung process:

K1(k1, ζ
(1)) is the incoming lepton e−(e+) initial state with momentum k1

and polarization state ζ(1).
P1(p1, ξ

(1)) is the lepton e−(e+) final state with momentum p1 and polariza-
tion state ξ(1).
P2(p2, ξ

(2)) is the bremsstrahlung photon in final state with momentum p2

and polarization state ξ(2).

17.5.3 Polarization transfer from the lepton e−(e+) to

a photon

The polarization transfer from an electron (positron) to a photon in a brems-
strahlung process was first calculated by Olsen and Maximon [1] taking into
account both Coulomb and screening effects. In the Stokes vector formalism,
the e−(e+) polarization state can be transformed to a photon polarization
finale state by means of interaction matrix T b

γ . It defined via

(

O

ξ(2)

)

= T b
γ

(

1

ζ(1)

)

, (17.51)

and

T b
γ ≈









1 0 0 0
D 0 0 0
0 0 0 0
0 T 0 L









, (17.52)

where

I = (ǫ21 + ǫ22)(3 + 2Γ) − 2ǫ1ǫ2(1 + 4u2ξ̂2Γ) (17.53)

D =
{

8ǫ1ǫ2u
2ξ̂2Γ

}

/I (17.54)

T =
{

−4kǫ2ξ̂(1 − 2ξ̂)uΓ
}

/I (17.55)

L = k{(ǫ1 + ǫ2)(3 + 2Γ) − 2ǫ2(1 + 4u2ξ̂2Γ)}/I (17.56)

and
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ǫ1 Total energy of the incoming lepton e+(e−) in units mc2

ǫ2 Total energy of the outgoing lepton e+(e−) in units mc2

k = (ǫ1 − ǫ2), the energy of the bremsstrahlung photon in units of mc2

p Electron (positron) initial momentum in units mc
k Bremsstrahlung photon momentum in units mc
u Component of p perpendicular to k in units mc and u = |u|
ξ̂ = 1/(1 + u2)

Coulomb and screening effects are contained in Γ, defined as follows

Γ = ln

(

1

δ

)

− 2 − f(Z) + F
(

ξ̂

δ

)

for ∆ ≤ 120 (17.57)

Γ = ln

(

111

ξ̂Z
1
3

)

− 2 − f(z) for ∆ ≥ 120 (17.58)

with

∆ =
12Z

1
3 ǫ1ǫ2ξ̂

121k
with Z the atomic number and δ =

k

2ǫ1ǫ2
(17.59)

f(Z) is the coulomb correction term derived by Davies, Bethe and Maxi-
mon [6]. F(ξ̂/δ) contains the screening effects and is zero for ∆ ≤ 0.5 (No
screening effects). For 0.5 ≤ ∆ ≤ 120 (intermediate screening) it is a slowly
decreasing function. The F(ξ̂/δ) values versus ∆ are given in table 17.1 and
used with a linear interpolation in between.

The polarization vector of the incoming e−(e+) must be rotated into the
frame defined by the scattering plane (x-z-plane) and the direction of the out-
going photon (z-axis). The resulting polarization vector of the bremsstrahlung
photon is also given in this frame. Using Eq. (17.51) and the transfer matrix
given by Eq. (17.52) the bremsstrahlung photon polarization state in the
Stokes formalism [2, 3] is given by

ξ(2) =







ξ
(2)
1

ξ
(2)
2

ξ
(2)
3






≈





D
0

ζ
(1)
1 L+ ζ

(1)
2 T



 (17.60)

17.5.4 Remaining polarization of the lepton after emit-

ting a bremsstrahlung photon

The e−(e+) polarization final state after emitting a bremsstrahlung photon
can be calculated using the interaction matrix T b

l which describes the lepton

276



Table 17.1: F(ξ̂/δ) for intermediate values of the screening factor [7].

∆ −F
(

ξ̂/δ
)

∆ −F
(

ξ̂/δ
)

0.5 0.0145 40.0 2.00
1.0 0.0490 45.0 2.114
2.0 0.1400 50.0 2.216
4.0 0.3312 60.0 2.393
8.0 0.6758 70.0 2.545
15.0 1.126 80.0 2.676
20.0 1.367 90.0 2.793
25.0 1.564 100.0 2.897
30.0 1.731 120.0 3.078
35.0 1.875

depolarization. The polarization vector for the outgoing e−(e+) is not given
by Olsen and Maximon. However, their results can be used to calculate the
following transfer matrix [4, 5].

(

O

ξ(1)

)

= T b
l

(

1

ζ(1)

)

(17.61)

T b
l ≈









1 0 0 0
D M 0 E
0 0 M 0
0 F 0 M + P









(17.62)

where

I = (ǫ21 + ǫ22)(3 + 2Γ) − 2ǫ1ǫ2(1 + 4u2ξ̂2Γ) (17.63)

F = ǫ2

{

4kξ̂u(1 − 2ξ̂)Γ
}

/I (17.64)

E = ǫ1

{

4kξ̂u(2ξ̂ − 1)Γ
}

/I (17.65)

M =
{

4kǫ1ǫ2(1 + Γ − 2u2ξ̂2Γ)
}

/I (17.66)

P =
{

k2(1 + 8Γ(ξ̂ − 0.5)2
}

/I (17.67)

and
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ǫ1 Total energy of the incoming e+/e− in units mc2

ǫ2 Total energy of the outgoing e+/e− in units mc2

k = (ǫ1 − ǫ2), energy of the photon in units of mc2

p Electron (positron) initial momentum in units mc
k Photon momentum in units mc
u Component of p perpendicular to k in units mc and u = |u|

Using Eq. (17.61) and the transfer matrix given by Eq. (17.62) the e−(e+)
polarization state after emitting a bremsstrahlung photon is given in the
Stokes formalism by

ξ(1) =







ξ
(1)
1

ξ
(1)
2

ξ
(1)
3






≈







ζ
(1)
1 M + ζ

(1)
3 E

ζ
(1)
2 M

ζ
(1)
3 (M + P ) + ζ

(1)
1 F






. (17.68)

17.5.5 Status of this document

20.11.06 created by K.Laihem
21.02.07 minor update by A.Schälicke
27.11.08 correction in Eq. (17.56) by A.Schälicke
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17.6 Polarized Gamma conversion into an electron–

positron pair

17.6.1 Method

The polarized version of gamma conversion is based on the EM standard pro-
cess G4GammaConversion. Mean free path and the distribution of explicitly
generated final state particles are treated by this version. For details consult
section 5.4.

The remaining task is to attribute polarization vectors to the generated
final state leptons, which is discussed in the following.

17.6.2 Polarization transfer from the photon to the

two leptons

Gamma conversion process is essentially the inverse process of Bremsstrahlung
and the interaction matrix is obtained by inverting the rows and columns of
the bremsstrahlung matrix and changing the sign of ǫ2, cf. section 17.5. It
follows from the work by Olsen and Maximon [1] that the polarization state
ξ(1) of an electron or positron after pair production is obtained by

(

O

ξ(1)

)

= T p
l

(

1

ζ(1)

)

(17.69)

and

T p
l ≈









1 D 0 0
0 0 0 T
0 0 0 0
0 0 0 L









, (17.70)

where

I = (ǫ21 + ǫ22)(3 + 2Γ) + 2ǫ1ǫ2(1 + 4u2ξ̂2Γ) (17.71)

D =
{

−8ǫ1ǫ2u
2ξ̂2Γ

}

/I (17.72)

T =
{

−4kǫ2ξ̂(1 − 2ξ̂)uΓ
}

/I (17.73)

L = k{(ǫ1 − ǫ2)(3 + 2Γ) + 2ǫ2(1 + 4u2ξ̂2Γ)}/I (17.74)

and
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ǫ1 total energy of the first lepton e+(e−) in units mc2

ǫ2 total energy of the second lepton e−(e+) in units mc2

k = (ǫ1 + ǫ2) energy of the incoming photon in units of mc2

p electron=positron initial momentum in units mc
k photon momentum in units mc
u electron/positron initial momentum in units mc
u = |u|

Coulomb and screening effects are contained in Γ, defined in section 17.5.
Using Eq. (17.69) and the transfer matrix given by Eq. (17.70) the polar-

ization state of the produced e−(e+) is given in the Stokes formalism by:

ξ(1) =







ξ
(1)
1

ξ
(1)
2

ξ
(1)
3






≈





ζ
(1)
3 T
0

ζ
(1)
3 L



 (17.75)

17.6.3 Status of this document

20.11.06 created by K.Laihem
21.02.07 minor update by A.Schälicke
27.11.08 correction in Eq. (17.74) by A.Schälicke
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17.7 Polarized Photoelectric Effect

17.7.1 Method

This section describes the basic formulas of polarization transfer in the pho-
toelectric effect class (G4PolarizedPhotoElectricEffect). The photoelectric
effect is the emission of electrons from matter upon the absorption of elec-
tromagnetic radiation, such as ultraviolet radiation or x-rays. The energy
of the photon is completely absorbed by the electron and, if sufficient, the
electron can escape from the material with a finite kinetic energy. A single
photon can only eject a single electron, as the energy of one photon is only
absorbed by one electron. The electrons that are emitted are often called
photoelectrons. If the photon energy is higher than the binding energy the
remaining energy is transferred to the electron as a kinetic energy

Ee−
kin = k − Bshell (17.76)

In Geant4 the photoelectric effect process is taken into account if:

k > Bshell (17.77)

Where k is the incoming photon energy and Bshell the electron binding energy
provided by the class G4AtomicShells.

The polarized version of the photoelectric effect is based on the EM stan-
dard process G4PhotoElectricEffect. Mean free path and the distribution
of explicitly generated final state particles are treated by this version. For
details consult section 5.2.

The remaining task is to attribute polarization vectors to the generated
final state electron, which is discussed in the following.

17.7.2 Polarization transfer

The polarization state of an incoming polarized photon is described by the
Stokes vector ~ζ (1). The polarization transfer to the photoelectron can be de-
scribed in the Stokes formalism using the same approach as for the Bremsstrahlung
and gamma conversion processes, cf. 17.5 and 17.6. The relation between the
photoelectron’s Stokes parameters and the incoming photon’s Stokes param-
eters is described by the interaction matrix T p

l derived from H. Olsen [1] and
reviewed by H.W McMaster [2]:

(

I ′

~ξ(1)

)

= T p
l

(

I0
~ζ (1)

)

(17.78)
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In general, for the photoelectric effect as a two-body scattering, the cross
section should be correlated with the spin states of the incoming photon
and the target electron. In our implementation the target electron is not
polarized and only the polarization transfer from the photon to the pho-
toelectron is taken into account. In this case the cross section of the pro-
cess remains polarization independent. To compute the matrix elements we
take advantage of the available kinematic variables provided by the generic
G4PhotoelectricEffect class. To compute the photoelectron spin state (Stokes
parameters), four main parameters are needed:

• The incoming photon Stokes vector ~ζ (1)

• The incoming photon’s energy k.

• the photoelectron’s kinetic energy Ee−
kin or the Lorentz factors β and γ.

• The photoelectron’s polar angle θ or cos θ.

The interaction matrix derived by H. Olsen [1] is given by:

T P
l =









1 +D −D 0 0
0 0 0 B
0 0 0 0
0 0 0 A









(17.79)

Where

D =
1

k

[

2

kǫ(1 − β cos θ)
− 1

]

(17.80)

A =
ǫ

ǫ+ 1

[

2

kǫ
+ β cos θ +

2

kǫ2(1 − β cos θ)

]

(17.81)

B =
ǫ

ǫ+ 1
β sin θ

[

2

kǫ(1 − β cos θ)
− 1

]

(17.82)

Using Eq. (17.78) and the transfer matrix given by Eq. (17.79) the polar-
ization state of the produced e− is given in the Stokes formalism by:

~ξ(1) =







ξ
(1)
1

ξ
(1)
2

ξ
(1)
3






=





ζ
(1)
3 B
0

ζ
(1)
3 A



 (17.83)

From equation (17.83) one can see that a longitudinally (transversally)
polarized photoelectron can only be produced if the incoming photon is cir-
cularly polarized.
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Chapter 18

X-Ray Production
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18.1 Transition radiation

18.1.1 The Relationship of Transition Radiation to X-

ray Cherenkov Radiation

X-ray transition radiation (XTR ) occurs when a relativistic charged particle
passes from one medium to another of a different dielectric permittivity. In
order to describe this process it is useful to begin with an explanation of
X-ray Cherenkov radiation, which is closely related.

The mean number of X-ray Cherenkov radiation (XCR) photons of fre-
quency ω emitted into an angle θ per unit distance along a particle trajectory
is [1]

d3N̄xcr

~dω dx dθ2
=

α

π~c

ω

c
θ2Im {Z} . (18.1)

Here the quantity Z is introduced as the complex formation zone of XCR in
the medium:

Z =
L

1 − i
L

l

, L =
c

ω

[

γ−2 +
ω2

p

ω2
+ θ2

]−1

, γ−2 = 1 − β2. (18.2)

with l and ωp the photon absorption length and the plasma frequency, re-
spectively, in the medium. For the case of a transparent medium, l → ∞
and the complex formation zone reduces to the coherence length L of XCR.
The coherence length roughly corresponds to that part of the trajectory in
which an XCR photon can be created.

Introducing a complex quantity Z with its imaginary part proportional
to the absorption cross-section (∼ l−1) is required in order to account for
absorption in the medium. Usually, ω2

p/ω
2 ≫ c/ωl. Then it can be seen from

Eqs. 18.1 and 18.2 that the number of emitted XCR photons is considerably
suppressed and disappears in the limit of a transparent medium. This is
caused by the destructive interference between the photons emitted from
different parts of the particle trajectory.

The destructive interference of X-ray Cherenkov radiation is removed if
the particle crosses a boundary between two media with different dielectric
permittivities, ǫ, where

ǫ = 1 − ω2
p

ω2
+ i

c

ωl
. (18.3)

Here the standard high-frequency approximation for the dielectric permittiv-
ity has been used. This is valid for energy transfers larger than the K-shell
excitation potential.
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If layers of media are alternated with spacings of order L, the X-ray
radiation yield from a trajectory of unit length can be increased by roughly
l/L times. The radiation produced in this case is called X-ray transition
radiation (XTR).

18.1.2 Calculating the X-ray Transition Radiation Yield

Using the methods developed in Ref. [2] one can derive the relation describing
the mean number of XTR photons generated per unit photon frequency and
θ2 inside the radiator for a general XTR radiator consisting of n different
absorbing media with fluctuating thicknesses:

d2N̄in

~dω dθ2
=

α

π~c2
ωθ2Re

{

n−1
∑

i=1

(Zi − Zi+1)
2+ (18.4)

+ 2

n−1
∑

k=1

k−1
∑

i=1

(Zi − Zi+1)

[

k
∏

j=i+1

Fj

]

(Zk − Zk+1)

}

, Fj = exp

[

− tj
2Zj

]

.

In the case of gamma distributed gap thicknesses (foam or fiber radiators)
the values Fj , (j = 1, 2) can be estimated as:

Fj =

∫ ∞

0

dtj

(

νj

t̄j

)νj t
νj−1
j

Γ(νj)
exp

[

−νjtj
t̄j

− i
tj

2Zj

]

=

[

1 + i
t̄j

2Zjνj

]−νj

,

(18.5)
where Zj is the complex formation zone of XTR (similar to relation 18.2
for XCR) in the j-th medium [2, 6]. Γ is the Euler gamma function, t̄j is
the mean thickness of the j-th medium in the radiator and νj > 0 is the
parameter roughly describing the relative fluctuations of tj . In fact, the
relative fluctuation is δtj/t̄j ∼ 1/

√
νj .

In the particular case of n foils of the first medium (Z1, F1) interspersed
with gas gaps of the second medium (Z2, F2), one obtains:

d2N̄in

~dω dθ2
=

2α

π~c2
ωθ2Re

{

〈R(n)〉
}

, F = F1F2, (18.6)

〈R(n)〉 = (Z1 − Z2)
2

{

n
(1 − F1)(1 − F2)

1 − F
+

(1 − F1)
2F2[1 − F n]

(1 − F )2

}

. (18.7)

Here 〈R(n)〉 is the stack factor reflecting the radiator geometry. The integra-
tion of (18.6) with respect to θ2 can be simplified for the case of a regular
radiator (ν1,2 → ∞), transparent in terms of XTR generation media, and
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n≫ 1 [3]. The frequency spectrum of emitted XTR photons is given by:

dN̄in

~dω
=

∫ ∼10γ−2

0

dθ2 d2N̄in

~dω dθ2
=

4αn

π~ω
(C1 + C2)

2

·
kmax
∑

k=kmin

(k − Cmin)

(k − C1)2(k + C2)2
sin2

[

πt1
t1 + t2

(k + C2)

]

,

(18.8)

C1,2 =
t1,2(ω

2
1 − ω2

2)

4πcω
, Cmin =

1

4πc

[

ω(t1 + t2)

γ2
+
t1ω

2
1 + t2ω

2
2

ω

]

.

The sum in (18.8) is defined by terms with k ≥ kmin corresponding to the
region of θ ≥ 0. Therefore kmin should be the nearest to Cmin integer kmin ≥
Cmin. The value of kmax is defined by the maximum emission angle θ2

max ∼
10γ−2. It can be evaluated as the integer part of

Cmax = Cmin +
ω(t1 + t2)

4πc

10

γ2
, kmax − kmin ∼ 102 ÷ 103 ≫ 1.

Numerically, however, only a few tens of terms contribute substantially to the
sum, that is, one can choose kmax ∼ kmin + 20. Equation (18.8) corresponds
to the spectrum of the total number of photons emitted inside a regular
transparent radiator. Therefore the mean interaction length, λXTR, of the
XTR process in this kind of radiator can be introduced as:

λXTR = n(t1 + t2)

[
∫

~ωmax

~ωmin

~dω
dN̄in

~dω

]−1

,

where ~ωmin ∼ 1 keV, and ~ωmax ∼ 100 keV for the majority of high energy
physics experiments. Its value is constant along the particle trajectory in
the approximation of a transparent regular radiator. The spectrum of the
total number of XTR photons after regular transparent radiator is defined
by (18.8) with:

n→ neff =

n−1
∑

k=0

exp[−k(σ1t1 + σ2t2)] =
1 − exp[−n(σ1t1 + σ2t2)]

1 − exp[−(σ1t1 + σ2t2)]
,

where σ1 and σ2 are the photo-absorption cross-sections corresponding to the
photon frequency ω in the first and the second medium, respectively. With
this correction taken into account the XTR absorption in the radiator (18.8)
corresponds to the results of [4]. In the more general case of the flux of XTR
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photons after a radiator, the XTR absorption can be taken into account with
a calculation based on the stack factor derived in [5]:

〈R(n)
flux〉 = (L1 − L2)

2

{

1 −Qn

1 −Q

(1 +Q1)(1 + F ) − 2F1 − 2Q1F2

2(1 − F )

+
(1 − F1)(Q1 − F1)F2(Q

n − F n)

(1 − F )(Q− F )

}

, (18.9)

Q = Q1 ·Q2, Qj = exp [−tj/lj] = exp [−σjtj] , j = 1, 2.

Both XTR energy loss (18.7) and flux (18.9) models can be implemented as
a discrete electromagnetic process (see below).

18.1.3 Simulating X-ray Transition Radiation Produc-
tion

A typical XTR radiator consits of many (∼ 100) boundaries between different
materials. To improve the tracking performance in such a volume one can
introduce an artificial material [6], which is the geometrical mixture of foil
and gas contents. Here is an example:

// In DetectorConstruction of an application

// Preparation of mixed radiator material

foilGasRatio = fRadThickness/(fRadThickness+fGasGap);

foilDensity = 1.39*g/cm3; // Mylar

gasDensity = 1.2928*mg/cm3 ; // Air

totDensity = foilDensity*foilGasRatio +

gasDensity*(1.0-foilGasRatio);

fractionFoil = foilDensity*foilGasRatio/totDensity;

fractionGas = gasDensity*(1.0-foilGasRatio)/totDensity;

G4Material* radiatorMat = new G4Material("radiatorMat",

totDensity,

ncomponents = 2 );

radiatorMat->AddMaterial( Mylar, fractionFoil );

radiatorMat->AddMaterial( Air, fractionGas );

G4cout << *(G4Material::GetMaterialTable()) << G4endl;

// materials of the TR radiator

fRadiatorMat = radiatorMat; // artificial for geometry

fFoilMat = Mylar;

fGasMat = Air;

This artificial material will be assigned to the logical volume in which
XTR will be generated:
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solidRadiator = new G4Box("Radiator",

1.1*AbsorberRadius ,

1.1*AbsorberRadius,

0.5*radThick );

logicRadiator = new G4LogicalVolume( solidRadiator,

fRadiatorMat, // !!!

"Radiator");

physiRadiator = new G4PVPlacement(0,

G4ThreeVector(0,0,zRad),

"Radiator", logicRadiator,

physiWorld, false, 0 );

XTR photons generated by a relativistic charged particle intersecting a
radiator with 2n interfaces between different media can be simulated by using
the following algorithm. First the total number of XTR photons is estimated
using a Poisson distribution about the mean number of photons given by the
following expression:

N̄ (n) =

∫ ω2

ω1

dω

∫ θ2
max

0

dθ2d
2N̄ (n)

dω dθ2
=

2α

πc2

∫ ω2

ω1

ωdω

∫ θ2
max

0

θ2dθ2Re
{

〈R(n)〉
}

.

Here θ2
max ∼ 10γ−2, ~ω1 ∼ 1 keV, ~ω2 ∼ 100 keV, and 〈R(n)〉 correspond to

the geometry of the experiment. For events in which the number of XTR
photons is not equal to zero, the energy and angle of each XTR quantum is
sampled from the integral distributions obtained by the numerical integration
of expression (18.6). For example, the integral energy spectrum of emitted

XTR photons, N̄
(n)
>ω , is defined from the following integral distribution:

N̄
(n)
>ω =

2α

πc2

∫ ω2

ω

ωdω

∫ θ2
max

0

θ2dθ2Re
{

〈R(n)〉
}

.

In Geant4 XTR generation inside or after radiators is described as a dis-
crete electromagnetic process. It is convenient for the description of tracks in
magnetic fields and can be used for the cases when the radiating charge ex-
periences a scattering inside the radiator. The base class G4VXTRenergyLoss
is responsible for the creation of tables with integral energy and angular
distributions of XTR photons. It also contains the PostDoIt function pro-
viding XTR photon generation and motion (if fExitFlux=true) through a
XTR radiator to its boundary. Particular models like G4RegularXTRadiator
implement the pure virtual function GetStackFactor, which calculates the
response of the XTR radiator reflecting its geometry. Included below are
some comments for the declaration of XTR in a user application.
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In the physics list one should pass to the XTR process additional details
of the XTR radiator involved:

// In PhysicsList of an application

else if (particleName == "e-") // Construct processes for electron with XTR

{

pmanager->AddProcess(new G4MultipleScattering, -1, 1,1 );

pmanager->AddProcess(new G4eBremsstrahlung(), -1,-1,1 );

pmanager->AddProcess(new Em10StepCut(), -1,-1,1 );

// in regular radiators:

pmanager->AddDiscreteProcess(

new G4RegularXTRadiator // XTR dEdx in general regular radiator

// new G4XTRRegularRadModel - XTR flux after general regular radiator

// new G4TransparentRegXTRadiator - XTR dEdx in transparent

// regular radiator

// new G4XTRTransparentRegRadModel - XTR flux after transparent

// regular radiator

(pDet->GetLogicalRadiator(), // XTR radiator

pDet->GetFoilMaterial(), // real foil

pDet->GetGasMaterial(), // real gas

pDet->GetFoilThick(), // real geometry

pDet->GetGasThick(),

pDet->GetFoilNumber(),

"RegularXTRadiator"));

// or for foam/fiber radiators:

pmanager->AddDiscreteProcess(

new G4GammaXTRadiator - XTR dEdx in general foam/fiber radiator

// new G4XTRGammaRadModel - XTR flux after general foam/fiber radiator

( pDet->GetLogicalRadiator(),

1000.,

100.,

pDet->GetFoilMaterial(),

pDet->GetGasMaterial(),

pDet->GetFoilThick(),

pDet->GetGasThick(),

pDet->GetFoilNumber(),

"GammaXTRadiator"));

}

Here for the foam/fiber radiators the values 1000 and 100 are the ν parame-
ters (which can be varied) of the Gamma distribution for the foil and gas gaps,
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respectively. Classes G4TransparentRegXTRadiator and G4XTRTransparentRegRadModel
correspond (18.8) to n and neff , respectively.

18.1.4 Status of this document

18.11.05 modified by V.Grichine
29.11.02 re-written by D.H. Wright
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18.2 Scintillation

Every scintillating material has a characteristic light yield, Y (photons/MeV ),
and an intrinsic resolution which generally broadens the statistical distribu-
tion, σi/σs > 1, due to impurities which are typical for doped crystals like
NaI(Tl) and CsI(Tl). The average yield can have a non-linear dependence
on the local energy deposition. Scintillators also have a time distribution
spectrum with one or more exponential decay time constants, τi, with each
decay component having its intrinsic photon emission spectrum. These are
empirical parameters typical for each material.

The generation of scintillation light can be simulated by sampling the number
of photons from a Poisson distribution. This distribution is based on the
energy lost during a step in a material and on the scintillation properties of
that material. The frequency of each photon is sampled from the empirical
spectra. The photons are generated evenly along the track segment and are
emitted uniformly into 4π with a random linear polarization.

18.2.1 Status of this document

07.12.98 created by P.Gumplinger
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18.3 Čerenkov Effect

The radiation of Čerenkov light occurs when a charged particle moves through
a dispersive medium faster than the speed of light in that medium. A dis-
persive medium is one whose index of refraction is an increasing function of
photon energy. Two things happen when such a particle slows down:

1. a cone of Čerenkov photons is emitted, with the cone angle (measured
with respect to the particle momentum) decreasing as the particle loses
energy;

2. the momentum of the photons produced increases, while the number
of photons produced decreases.

When the particle velocity drops below the local speed of light, photons are
no longer emitted. At that point, the Čerenkov cone collapses to zero.

In order to simulate Čerenkov radiation the number of photons per track
length must be calculated. The formulae used for this calculation can be
found below and in [1, 2]. Let n be the refractive index of the dielectric
material acting as a radiator. Here n = c/c′ where c′ is the group velocity of
light in the material, hence 1 ≤ n. In a dispersive material n is an increasing
function of the photon energy ǫ (dn/dǫ ≥ 0). A particle traveling with speed
β = v/c will emit photons at an angle θ with respect to its direction, where
θ is given by

cos θ =
1

βn
.

From this follows the limitation for the momentum of the emitted photons:

n(ǫmin) =
1

β
.

Photons emitted with an energy beyond a certain value are immediately
re-absorbed by the material; this is the window of transparency of the radi-
ator. As a consequence, all photons are contained in a cone of opening angle
cos θmax = 1/(βn(ǫmax)).

The average number of photons produced is given by the relations :

dN =
αz2

~c
sin2 θdǫdx =

αz2

~c
(1 − 1

n2β2
)dǫdx

≈ 370z2photons

eV cm
(1 − 1

n2β2
)dǫdx
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and the number of photons generated per track length is

dN

dx
≈ 370z2

∫ ǫmax

ǫmin

dǫ

(

1 − 1

n2β2

)

= 370z2

[

ǫmax − ǫmin − 1

β2

∫ ǫmax

ǫmin

dǫ

n2(ǫ)

]

.

The number of photons produced is calculated from a Poisson distribution
with a mean of 〈n〉 = StepLength dN/dx. The energy distribution of the
photon is then sampled from the density function

f(ǫ) =

[

1 − 1

n2(ǫ)β2

]

.

18.3.1 Status of this document
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18.4 Synchrotron Radiation

18.4.1 Photon spectrum

Synchrotron radiation photons are emitted by relativistic charged particles
traveling in magnetic fields. The properties of synchrotron radiation are well
understood and described in textbooks [1, 2, 3].

In the simplest case, we have an electron of momentum p moving perpen-
dicular to a homogeneous magnetic field B. The magnetic field will keep the
particle on a circular path, with radius

ρ =
p

eB
=
mγβc

eB
. Numerically we have ρ[m] = p[GeV/c]

3.336 m

B[T]
.

(18.10)
In general, there will be an arbitrary angle θ between the local magnetic
field B and momentum vector p of the particle. The motion has a circular
component in the plane perpendicular to the magnetic field, and in addition a
constant momentum component parallel to the magnetic field. For a constant
homogeneous field, the resulting trajectory is a helix.

The critical energy of the synchrotron radiation can be calculated using
the radius ρ of Eq.18.10 and angle θ or the magnetic field perpendicular to
the particle direction B⊥ = B sin θ according to

Ec =
3

2
~c
γ3 sin θ

ρ
=

3 ~

2m
γ2 eB⊥ . (18.11)

Half of the synchrotron radiation power is radiated by photons above the
critical energy.

With x we denote the photon energy Eγ , expressed in units of the critical
energy Ec

x =
Eγ

Ec
. (18.12)

The photon spectrum (number of photons emitted per path length s and
relative energy x) can be written as

d2N

ds dx
=

√
3α

2π

eB⊥
mc

∫ ∞

x

K5/3(ξ) dξ (18.13)

where α = e2/ 4πǫ0~c is the dimensionless electromagnetic coupling (or fine
structure) constant andK5/3 is the modified Bessel function of the third kind.

The number of photons emitted per unit length and the mean free path
λ between two photon emissions is obtained by integration over all photon
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energies. Using
∫ ∞

0

dx

∫ ∞

x

K5/3(ξ) dξ =
5π

3
(18.14)

we find that
dN

ds
=

5α

2
√

3

eB⊥
mβc

=
1

λ
. (18.15)

Here we are only interested in ultra-relativistic (β ≈ 1) particles, for
which λ only depends on the field B and not on the particle energy. We
define a constant λB such that

λ =
λB

B⊥
where λB =

2
√

3

5

mc

α e
= 0.16183 Tm . (18.16)

As an example, consider a 10GeV electron, travelling perpendicular to
a 1T field. It moves along a circular path of radius ρ = 33.356 m. For the
Lorentz factor we have γ = 19569.5 and β = 1−1.4×10−9. The critical energy
is Ec = 66.5 keV and the mean free path between two photon emissions is
λ = 0.16183 m.

18.4.2 Validity

The spectrum given in Eq. 18.13 can generally be expected to provide a very
accurate description for the synchrotron radiation spectrum generated by
GeV electrons in magnetic fields.

Here we discuss some known limitations and possible extensions.
For particles traveling on a circular path, the spectrum observed in one

location will in fact not be a continuous spectrum, but a discrete spectrum,
consisting only of harmonics or modes n of the revolution frequency. In
practice, the mode numbers will generally be too high to make this a visible
effect. The critical mode number corresponding to the critical energy is
nc = 3/2 γ3. 10GeV electrons for example have nc ≈ 1013.

Synchrotron radiation can be neglected for slower particles and only be-
comes relevant for ultra-relativistic particles with γ > 103. Using β = 1
introduces an uncertainty of about 1/2γ2 or less than 5 × 10−7.

It is rather straightforward to extend the formulas presented here to par-
ticles other than electrons, with arbitrary charge q and mass m, see [4]. The
number of photons and the power scales with the square of the charge.

The standard synchrotron spectrum of Eq. 18.13 is only valid as long as
the photon energy remains small compared to the particle energy [5, 6]. This
is a very safe assumption for GeV electrons and standard magnets with fields
of order of Tesla.
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An extension of synchrotron radiation to fields exceeding several hundred
Tesla, such as those present in the beam-beam interaction in linear-colliders,
is also known as beamstrahlung. For an introduction see [7].

The standard photon spectrum applies to homogeneous fields and re-
mains a good approximation for magnetic fields which remain approximately
constant over a the length ρ/γ, also known as the formation length for syn-
chrotron radiation. Short magnets and edge fields will result instead in more
energetic photons than predicted by the standard spectrum.

We also note that short bunches of many particles will start to radiate
coherently like a single particle of the equivalent charge at wavelengths which
are longer than the bunch dimensions.

Low energy, long-wavelength synchrotron radiation may destructively in-
terfere with conducting surfaces [8].

The soft part of the synchrotron radiation spectrum emitted by charged
particles travelling through a medium will be modified for frequencies close
to and lower than the plasma frequency [9].

18.4.3 Direct inversion and generation of the photon
energy spectrum

The task is to find an algorithm that effectively transforms the flat distri-
bution given by standard pseudo-random generators into the desired distri-
bution proportional to the expressions given in Eqs. 18.13, 18.17. The trans-
formation is obtained from the inverse F−1 of the cumulative distribution
function F (x) =

∫ x

0
f(t)dt.

Leaving aside constant factors, the probability density function relevant
for the photon energy spectrum is

SynRad(x) =

∫ ∞

x

K5/3(t)dt . (18.17)

Numerical methods to evaluate K5/3 are discussed in [10]. An efficient al-
gorithm to evaluate the integral SynRad using Chebyshev polynomials is
described in [11]. This has been used in an earlier version of the Monte Carlo
generator for synchrotron radiation using approximate transformations and
the rejection method [12].

The cumulative distribution function is the integral of the probability
density function. Here we have

SynRadInt(z) =

∫ ∞

z

SynRad(x) dx , (18.18)
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Figure 18.1: SynFracInt (left) and its inverse InvSynFracInt (right), on a
log x scale. The functions x1/3, y3 and 1 − e−x, − log(1 − y) are shown as
dashed lines.

with normalization

SynRadInt(0) =

∫ ∞

0

SynRad(x) dx =
5π

3
, (18.19)

such that 3
5π

SynRadInt(x) gives the fraction of photons above x.
It is possible to directly obtain the desired distribution with a fast and

accurate algorithm using an analytical description based on simple transfor-
mations and Chebyshev polynomials. This approach is used here.

We now describe in some detail how the analytical description was ob-
tained. For more details see [13].

It turned out to be convenient to start from the normalized complement
rather then Eq. 18.18 directly, that is

SynFracInt(x) =
3

5π

∫ x

0

∫ ∞

x

K5/3(t)dt dx = 1 − 3

5π
SynRadInt(x) , (18.20)

which gives the fraction of photons below x.
Figure 18.1 shows on the left hand side y = SynFracInt(x) and on the

right hand side the inverse x = InvSynFracInt(y) together with simple ap-
proximate functions. We can see, that SynFracInt can be approximated by
x1/3 for small arguments, and by 1− e−x for large x. Consequently, we have
for the inverse, InvSynFracInt(y), which can be approximated for small y by
y3 and for large y by − log(1 − y).

Good convergence for InvSynFracInt(y) was obtained using Chebyshev
polynomials combined with the approximate expressions for small and large
arguments. For intermediate values, a Chebyshev polynomial can be used
directly. Table 18.1 summarizes the expressions used in the different intervals.
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Table 18.1: InvSynFracInt.

y x = InvSynFracInt(y)
y < 0.7 y3 PCh(y)

0.7 ≤ y ≤ 0.9999 PCh(y)
y > 0.9999 − log(1 − y)PCh(− log(1 − y))
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Figure 18.2: Comparison of the exact (smooth curve) and generated (his-
togram) spectra for 2 × 107 events. The photon spectrum is shown on the
left and the power spectrum on the right side.

The procedure for Monte Carlo simulation is to generate y at random uni-
formly distributed between 0 at 1, as provided by standard random gen-
erators, and then to calculate the energy x in units of the critical energy
according to x = InvSynFracInt(y).

The numerical accuracy of the energy spectrum presented here is about 14
decimal places, close to the machine precision. Fig. 18.2 shows a comparison
of generated and expected spectra. A Geant4 display of an electron moving
in a magnetic field radiating synchrotron photons is presented in Fig. 18.3
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Figure 18.3: Geant4 display. 10 GeV e+ moving initially in x-direction, bends
downwards on a circular path by a 0.1T magnetic field in z-direction.

18.4.4 Properties of the Power Spectra

The normalised probability function describing the photon energy spectrum
is

nγ(x) =
3

5π

∫ ∞

x

K5/3(t)dt . (18.21)

nγ(x) gives the fraction of photons in the interval x to x + dx, where x is
the photon energy in units of the critical energy. The first moment or mean
value is

µ =

∫ ∞

0

xnγ(x) dx =
8

15
√

3
. (18.22)

implying that the mean photon energy is 8
15

√
3

= 0.30792 of the critical en-
ergy.

The second moment about the mean, or variance, is

σ2 =

∫ ∞

0

(x− µ)2 nγ(x) dx =
211

675
, (18.23)

and the r.m.s. value of the photon energy spectrum is σ =
√

211
675

= 0.5591.
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The normalised power spectrum is

Pγ(x) =
9
√

3

8π
x

∫ ∞

x

K5/3(t)dt . (18.24)

Pγ(x) gives the fraction of the power which is radiated in the interval x to
x+ dx.

Half of the power is radiated below the critical energy

∫ 1

0

Pγ(x) dx = 0.5000 (18.25)

The mean value of the power spectrum is

µ =

∫ ∞

0

xPγ(x) dx =
55

24
√

3
= 1.32309 . (18.26)

The variance is

σ2 =

∫ ∞

0

(x− µ)2 Pγ(x) dx =
2351

1728
, (18.27)

and the r.m.s. width is σ =
√

2351
1728

= 1.16642.
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Chapter 19

Optical Photons
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19.1 Interactions of optical photons

Optical photons are produced when a charged particle traverses:

1. a dielectric material with velocity above the Čerenkov threshold;

2. a scintillating material.

19.1.1 Physics processes for optical photons

A photon is called optical when its wavelength is much greater than the
typical atomic spacing, for instance when λ ≥ 10nm which corresponds to
an energy E ≤ 100eV . Production of an optical photon in a HEP detector
is primarily due to:

1. Čerenkov effect;

2. Scintillation.

Optical photons undergo three kinds of interactions:

1. Elastic (Rayleigh) scattering;

2. Absorption;

3. Medium boundary interactions.

Rayleigh scattering

For optical photons Rayleigh scattering is usually unimportant. For λ =
.2µm we have σRayleigh ≈ .2b for N2 or O2 which gives a mean free path of
≈ 1.7km in air and ≈ 1m in quartz. Two important exceptions are aerogel,
which is used as a Čerenkov radiator for some special applications and large
water Čerenkov detectors for neutrino detection.

The differential cross section in Rayleigh scattering, dσ/dΩ, is propor-
tional to 1 + cos2 θ, where θ is the polar angle of the new polarization with
respect to the old polarization.

Absorption

Absorption is important for optical photons because it determines the lower
λ limit in the window of transparency of the radiator. Absorption competes
with photo-ionization in producing the signal in the detector, so it must be
treated properly in the tracking of optical photons.
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Medium boundary effects

When a photon arrives at the boundary of a dielectric medium, its behaviour
depends on the nature of the two materials which join at that boundary:

• Case dielectric → dielectric.
The photon can be transmitted (refracted ray) or reflected (reflected
ray). In case where the photon can only be reflected, total internal
reflection takes place.

• Case dielectric → metal.
The photon can be absorbed by the metal or reflected back into the
dielectric. If the photon is absorbed it can be detected according to
the photoelectron efficiency of the metal.

• Case dielectric → black material.
A black material is a tracking medium for which the user has not defined
any optical property. In this case the photon is immediately absorbed
undetected.

19.1.2 Photon polarization

The photon polarization is defined as a two component vector normal to the
direction of the photon:

(

a1e
iΦ1

a2eiΦ2

)

= eΦo
(

a1e
iΦc

a2e−iΦc

)

where Φc = (Φ1−Φ2)/2 is called circularity and Φo = (Φ1+Φ2)/2 is called
overall phase. Circularity gives the left- or right-polarization characteristic
of the photon. RICH materials usually do not distinguish between the two
polarizations and photons produced by the Čerenkov effect and scintillation
are linearly polarized, that is Φc = 0.

The overall phase is important in determining interference effects between
coherent waves. These are important only in layers of thickness comparable
with the wavelength, such as interference filters on mirrors. The effects of
such coatings can be accounted for by the empirical reflectivity factor for
the surface, and do not require a microscopic simulation. GEANT4 does not
keep track of the overall phase.

Vector polarization is described by the polarization angle tan Ψ = a2/a1.
Reflection/transmission probabilities are sensitive to the state of linear po-
larization, so this has to be taken into account. One parameter is sufficient to
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describe vector polarization, but to avoid too many trigonometrical transfor-
mations, a unit vector perpendicular to the direction of the photon is used in
GEANT4. The polarization vector is a data member of G4DynamicParticle.

19.1.3 Tracking of the photons

Optical photons are subject to in flight absorption, Rayleigh scattering and
boundary action. As explained above, the status of the photon is defined by
two vectors, the photon momentum (~p = ~~k) and photon polarization (~e).
By convention the direction of the polarization vector is that of the electric
field. Let also ~u be the normal to the material boundary at the point of
intersection, pointing out of the material which the photon is leaving and
toward the one which the photon is entering. The behaviour of a photon at
the surface boundary is determined by three quantities:

1. refraction or reflection angle, this represents the kinematics of the effect;

2. amplitude of the reflected and refracted waves, this is the dynamics of
the effect;

3. probability of the photon to be refracted or reflected, this is the quan-
tum mechanical effect which we have to take into account if we want
to describe the photon as a particle and not as a wave.

As said above, we distinguish three kinds of boundary action, dielectric
→ black material, dielectric → metal, dielectric → dielectric. The first case
is trivial, in the sense that the photon is immediately absorbed and it goes
undetected.

To determine the behaviour of the photon at the boundary, we will at
first treat it as an homogeneous monochromatic plane wave:

~E = ~E0e
i~k·~x−iωt

~B =
√
µǫ
~k × ~E

k

Case dielectric → dielectric

In the classical description the incoming wave splits into a reflected wave
(quantities with a double prime) and a refracted wave (quantities with a
single prime). Our problem is solved if we find the following quantities:

~E ′ = ~E ′
0e

i~k′·~x−iωt
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~E ′′ = ~E ′′
0e

i~k′′·~x−iωt

For the wave numbers the following relations hold:

|~k| = |~k′′| = k =
ω

c

√
µǫ

|~k′| = k′ =
ω

c

√

µ′ǫ′

Where the speed of the wave in the medium is v = c/
√
µǫ and the quantity

n = c/v =
√
µǫ is called refractive index of the medium. The condition that

the three waves, refracted, reflected and incident have the same phase at the
surface of the medium, gives us the well known Fresnel law:

(~k · ~x)surf = (~k′ · ~x)surf = (~k′′ · ~x)surf

k sin i = k′ sin r = k′′ sin r′

where i, r, r′ are, respectively, the angle of the incident, refracted and
reflected ray with the normal to the surface. From this formula the well
known condition emerges:

i = r′

sin i

sin r
=

√

µ′ǫ′

µǫ
=
n′

n

The dynamic properties of the wave at the boundary are derived from
Maxwell’s equations which impose the continuity of the normal components
of ~D and ~B and of the tangential components of ~E and ~H at the surface
boundary. The resulting ratios between the amplitudes of the the generated
waves with respect to the incoming one are expressed in the two following
cases:

1. a plane wave with the electric field (polarization vector) perpendicular
to the plane defined by the photon direction and the normal to the
boundary:

E ′
0

E0
=

2n cos i

n cos i = µ
µ′n′ cos r

=
2n cos i

n cos i+ n′ cos r

E ′′
0

E0

=
n cos i− µ

µ′n
′ cos r

n cos i+ µ
µ′n′ cos r

=
n cos i− n′ cos r

n cos i+ n′ cos r

where we suppose, as it is legitimate for visible or near-visible light,
that µ/µ′ ≈ 1;
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2. a plane wave with the electric field parallel to the above surface:

E ′
0

E0
=

2n cos i
µ
µ′n′ cos i+ n cos r

=
2n cos i

n′ cos i+ n cos r

E ′′
0

E0
=

µ
µ′n

′ cos i− n cos r
µ
µ′n′ cos i+ n cos r

=
n′ cos i− n cos r

n′ cos i+ n cos r

with the same approximation as above.

We note that in case of photon perpendicular to the surface, the following
relations hold:

E ′
0

E0

=
2n

n′ + n

E ′′
0

E0

=
n′ − n

n′ + n

where the sign convention for the parallel field has been adopted. This
means that if n′ > n there is a phase inversion for the reflected wave.

Any incoming wave can be separated into one piece polarized parallel to
the plane and one polarized perpendicular, and the two components treated
accordingly.

To maintain the particle description of the photon, the probability to
have a refracted or reflected photon must be calculated. The constraint is
that the number of photons be conserved, and this can be imposed via the
conservation of the energy flux at the boundary, as the number of photons is
proportional to the energy. The energy current is given by the expression:

~S =
1

2

c

4π

√
µǫ~E × ~H =

c

8π

√

ǫ

µ
E2

0 k̂

and the energy balance on a unit area of the boundary requires that:

~S · ~u = ~S ′ · ~u− ~S ′′ · ~u
S cos i = S ′cosr + S ′′cosi

c

8π

1

µ
nE2

0 cos i =
c

8π

1

µ′n
′E ′2

0 cos r +
c

8π

1

µ
nE ′′2

0 cos i

If we set again µ/µ′ ≈ 1, then the transmission probability for the photon
will be:

T = (
E ′

0

E0

)2n
′ cos r

n cos i

and the corresponding probability to be reflected will be R = 1 − T .

309



In case of reflection, the relation between the incoming photon (~k,~e), the

refracted one (~k′, ~e′) and the reflected one (~k′′, ~e′′) is given by the following
relations:

~q = ~k × ~u

~e⊥ = (
~e · ~q
|~q| )

~q

|~q|
~e‖ = ~e− ~e⊥

e′‖ = e‖
2n cos i

n′ cos i+ n cos r

e′⊥| = e⊥
2n cos i

n cos i+ n′ cos r

e′′‖ =
n′

n
e′‖ − e‖

e′′⊥ = e′⊥ − e⊥

After transmission or reflection of the photon, the polarization vector
is re-normalized to 1. In the case where sin r = n sin i/n′ > 1 then there
cannot be a refracted wave, and in this case we have a total internal reflection
according to the following formulas:

~k′′ = ~k − 2(~k · ~u)~u

~e′′ = −~e+ 2(~e · ~u)~u

Case dielectric → metal

In this case the photon cannot be transmitted. So the probability for the
photon to be absorbed by the metal is estimated according to the table
provided by the user. If the photon is not absorbed, it is reflected.

19.1.4 Mie Scattering in Henyey-Greensterin Approx-

imation

(Author: X. Qian, 2010-07-04)
Mie Scattering (or Mie solution) is an analytical solution of Maxwell’s

equations for the scattering of optical photon by spherical particles. The
general introduction of Mie scattering can be found in Ref. [2]. The ana-
lytical express of Mie Scattering are very complicated since they are a series
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sum of Bessel functions [3]. Therefore, the exact expression of Mie scattering
is not suitable to be included in the Monte Carlo simulation.

One common approximation made is called “Henyey-Greensterin” [5].
It has been used by Vlasios Vasileiou in GEANT4 simulation of Milagro
experiment [6]. In the HG approximation,

dσ

dΩ
∼ 1 − g2

(1 + g2 − 2g cos(θ))3/2
(19.1)

where
dΩ = d cos(θ)dφ (19.2)

and g =< cos(θ) > can be viewed as a free constant labeling the angular
distribution.

Therefore, the normalized density function of HG approximation can be
expressed as:

P (cos(θ0)) =

∫ cos(θ0)

−1
dσ
dΩ
d cos(θ)

∫ 1

−1
dσ
dΩ
d cos(θ)

=
1 − g2

2g
(

1

(1 + g2 − 2g cos(θ0))
− 1

1 + g
)(19.3)

Therefore,

cos(θ) =
1

2g
·(1+g2−(

1 − g2

1 − g + 2g · p)2) = 2p
(1 + g)2(1 − g + gp)

(1 − g + 2gp)2
−1 (19.4)

where p is a uniform random number between 0 and 1.
Similarly, the backward angle where θb = π− θf can also be simulated by

replacing θf to θb. Therefore the final differential cross section can be viewed
as:

dσ

dΩ
= r

dσ

dΩ
(θf , gf) + (1 − r)

dσ

dΩ
(θb, gb) (19.5)

This is the exact approach used in Ref. [4]. Here r is the ratio factor between
the forward angle and backward angle.

In implementing the above MC method into GEANT4, the treatment of
polarization and momentum are similar to that of Rayleigh scattering. We
require the final polarization direction to be perpendicular to the momentum
direction. We also require the final momentum, initial polarization and final
polarization to be in the same plane.
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Chapter 20

Phonon-Lattice Interactions
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20.1 Introduction

Phonons are quantized vibrations in solid-state lattices or amorphous solids,
of interest to the low-temperature physics community. Phonons are typically
produced when a heat source excites lattice vibrations, or when energy from
radiation is deposited through elastic interactions with nuclei of lattice atoms.
Below 1 K, thermal phonons are highly suppressed; this leaves only acoustic
and optical phonons to propagate.

There is significant interest from the condensed-matter community and
direct dark-matter searches to integrate phonon production and propaga-
tion with the excellent nuclear and electromagnetic simulations available in
Geant4. An effort in this area began in 2011 by the SuperCDMS Collaboration[1]
and is continuing; initial developments in phonon propagation have been in-
corporated into the Geant4 toolkit for Release 10.0.

As quasiparticles, phonons at low temparatures may be treated in the
Geant4 particle-tracking framework, carrying well defined momenta, and
propagating in specific directions until they interact[1]. The present imple-
mentation handles ballistic transport, scattering with mode-mixing, and an-
harmonic downcoversion[2][3][4] of acoustic phonons. Optical phonon trans-
port and interactions between propagating phonons and thermal background
phonons are not treated.

Production of phonons from charged particle energy loss or by photon-
lattice interactions are in development, but are not yet included in the Geant4
toolkit.

20.2 Phonon Propagation

The propagation of phonons is governed by the three-dimensional wave equation[5]:

ρω2ei = Cijlmkjkmel (20.1)

where ρ is the crystal mass density and Cijml is the elasticity tensor; the

phonon is described by its wave vector ~k, frequency ω and polarization ~e.
For a given wave vector ~k, Eq. 20.1 has three eigenvalues ω and three

polarization eigenvectors ~e. The three polarization states are labelled Fast
Transverse (FT), Slow Transverse (ST) and Longitudinal (L). The direction
and speed of propagation of the phonon are given by the group velocity ~vg =
dω/dk, which may be computed from Eq. 20.1:

~vg =
dω(~k)

d~k
= ∇kω(~k) . (20.2)
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Figure 20.1: Left: outline of phonon caustics in germanium as predicted
by Nothrop and Wolfe [6]. Right: Phonon caustics as simulated using the
Geant4 phonon transport code.

Since the lattice tensor Cijml is anisotropic in general, the phonon group

velocity ~vg is not parallel to the momentum vector ~~k. This anisotropic
transport leads to a focussing effect, where phonons are driven to directions
which correspond to the highest density of eigenvectors ~k. Experimentally,
this is seen[6] as caustics in the energy distribution resulting from a point-like

phonon source isotropic in ~k-space, as shown in Figure 20.1.

20.3 Lattice Parameters

20.4 Scattering and Mode Mixing

In a pure crystal, isotope scattering occurs when a phonon interacts with an
isotopic substitution site in the lattice. We treat it as an elastic scattering
process, where the phonon momentum direction (wave vector) and polariza-
tion are both randomized. The scattering rate for a phonon of frequency ν
(ω/2π) is given by[3]

Γscatter = Bν4 (20.3)

where Γscatter is the number of scattering events per unit time, and B is a
constant of proportionality derived from the elasticity tensor (see Eq. 11 and
Table 1 in [4]). For germanium, B = 3.67 × 10−41 s3. [4]

At each scattering event, the phonon polarziation may change between
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any of the three states L, ST , FT . The branching ratios for the polarizations
are determined by the relative density of allowed states in the lattice. This
process is often referred to as mode mixing.

20.5 Anharmonic Downconversion

An energetic phonon may interact in the crystal to produce two phonons of
reduced energy. This anharmonic downconversion conserves energy (~k = ~k′+
~k′′), but not momentum, since momentum is exchanged with the bulk lattice.
In principle, all three polarization states may decay through downconversion.
In practice, however, the rate for L-phonons completely dominates the energy
evolution of the system, with downconversion events from other polarization
states being negligigible[3].

The total downconversion rate Γanh for an L-phonon of frequency ν is
given by[3]

Γanh = Aν5 (20.4)

where (as in Eq. 20.3) A is a constant of proportionality derived from the
elasticity tensor (see Eq. 11 and Table 1 in [4]). For germanium, A = 6.43×
10−55 s4. [4]

Downconversion may produce either two transversely polarized phonons,
or one transverse and one longitudinal. The relative rates are determined by
dynamical constants derived from the elasticity tensor Cijkl.

As can be seen from Eqs. 20.3 and 20.4, phonon interactions depend
strongly on energy ~ν. High energy phonons (ν ∼ THz) start out in a
diffusive regime with high isotope scattering and downconversion rates and
mean free paths of order microns. After several such interactions, mean free
paths increase to several centimeters or more. This transition from a diffuse
to a ballistic transport mode is commonly referred to as “quasi-diffuse” and
it controls the time evolution of phonon heat pulses.

Simulation of heat pulse propagation using our Geant4 transport code has
been described previously[1] and shows good agreement with experiment.

20.6 References
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Chapter 21

Precision multi-scale modeling
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21.1 Overview

The physics simulation tools grouped in this domain reflect ongoing research
in key issues of particle transport:

• multi-scale simulation and its implications on condensed and discrete
transport schemes [1], [2], [3], [4], [5],

• epistemic uncertainties in physics models and parameters [6],

• innovative software design techniques [7], [9], [8], [10], [11] in support
of physics modeling,

• the assessment of the accuracy of data libraries used by Monte Carlo
simulation codes [12], [13], [14], [15], [16], [17],

• precision models of particle interactions with matter, quantitatively
assessed through comparison with experimental measurements of the
model constituents [1], [16], [17].

The main features of the simulation tools developed in this research con-
text, which are so far released in Geant4, are summarized below. They
concern impact ionisation by protons and α particles, and the following par-
ticle induced X-ray emission (PIXE), which are encompassed in the Geant4
”electromagnetic/pii” package.

21.2 Impact ionisation by hadrons and PIXE

Despite the simplicity of its nature as a physical effect, PIXE represents a
conceptual challenge for general-purpose Monte Carlo codes, since it involves
an intrinsically discrete effect (the atomic relaxation) intertwined with a pro-
cess (ionisation) affected by infrared divergence, therefore usually treated in
Monte Carlo codes by means of con The largely incomplete knowledge of
ionisation cross sections by hadron impact, limited to the innermost atomic
shells both as theoretical calculations and experimental measurements, fur-
ther complicates the achievement of a conceptually consistent description of
this process.

Early developments of proton and α particle impact ionisation cross sec-
tions in Geant4 are reviewed in a detailed paper devoted to PIXE simulation
with Geant4 [1]. This article also presents new, extensive developments for
PIXE simulation, their validation with respect to experimental data and the
first Geant4-based simulation involving PIXE in a concrete experimental use
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case: the optimization of the graded shielding of the X-ray detectors of the
eROSITA [18] mission. The new developments described in [1] are released
in Geant4 in the pii package (in source/processes/electromagnetic/pii).

The developments for PIXE simulation described in [1] provide a variety
of proton and α particle cross sections for the ionisation of K, L and M shells:

• theoretical calculations based on the ECPSSR [19] model and its vari-
ants (with Hartree-Slater corrections [20], with the united atom ap-
proximation [21] and specialized for high energies [22]),

• theoretical calculations based on plane wave Born approximation (PWBA),

• empirical models based on fits to experimental data collected by Paul
and Sacher [23] (for protons, K shell), Paul and Bolik [24] (for α, K
shell), Kahoul et al. [25]) (for protons, K, shell), Miyagawa et al. [26],
Orlic et al. [27] and Sow et al. [28] for L shell.

The cross section models available in Geant4 are listed in Table 21.1.
The calculation of cross sections in the course of the simulation is based

on the interpolation of tabulated values, which are collected in a data li-
brary. The tabulations corresponding to theoretical calculations span the
energy range between 10 keV and 10 GeV; empirical models are tabulated
consistently with the energy range of validity documented by their authors,
that corresponds to the range of the data used in the empirical fits and varies
along with the atomic number and sub-shell.

ECPSSR tabulations have been produced using the ISICS software [29,
30], 2006 version; an extended version, kindly provided by ISICS author S.
Cipolla [31], has been exploited to produce tabulations associated with recent
high energy modelling developments [22].

An example of the characteristics of different cross section models is il-
lustrated in Fig. 21.1. Fig. 21.2 shows various cross section models for
the ionisation of carbon K shell by proton, compared to experimental data
reported in [23].

The implemented cross section models have been subject to rigorous sta-
tistical analysis to evaluate their compatibility with experimental measure-
ments reported in [23], [32], [33] and to compare the relative accuracy of the
various modelling options.

The validation process involved two stages: first goodness-of-fit analysis
based on the χ2 test to evaluate the hypothesis of compatibility with ex-
perimental data, then categorical analysis exploiting contingency tables to
determine whether the various modelling options differ significantly in accu-
racy. Contingency tables were analyzed with the χ2 test and with Fishers
exact test.
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Table 21.1: Ionisation cross section models available for PIXE simulation
with Geant4

Protons, K shell
Model Z range
ECPSSR 6-92
ECPSSR High Energy 6-92
ECPSSR Hartree-Slater 6-92
ECPSSR United Atom 6-92
ECPSSR reference [23] 6-92
PWBA 6-92
Paul and Sacher 6-92
Kahoul et al. 6-92

Protons, L shell
Model Z range
ECPSSR 6-92
ECPSSR United Atom 6-92
PWBA 6-92
Miyagawa et al. 40-92
Orlic et al. 43-92
Sow et al. 43-92

Protons, M shell
Model Z range
ECPSSR 6-92
PWBA 6-92

α, K shell
Model Z range
ECPSSR 6-92
ECPSSR Hartree-Slater 6-92
ECPSSR reference [24] 6-92
PWBA 6-92
Paul and Bolik 6-92

α, L and M shell
Model Z range
ECPSSR 6-92
PWBA 6-92
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Figure 21.1: Cross section for the ionisation of copper K shell by proton
impact according to the various implemented modeling options: ECPSSR
model, ECPSSR model with “united atom” (UA) approximation, Hartree-
Slater (HS) corrections and specialized for high energies (HE); plane wave
Born approximation (PWBA); empirical models by Paul and Sacher and
Kahoul et al. The curves reproducing some of the model implementations
can be hardly distinguished in the plot due to their similarity.

The complete set of validation results is documented in [1]. Only the
main ones are summarized here; Geant4 users interested in detailed results,
like the accuracy of different cross section models for specific target elements,
should should refer to [1] for detailed information.

Regarding the K shell, the statistical analysis identified the ECPSSR
model with Hartree-Slater correction as the most accurate in the energy
range up to approximately 10 MeV; at higher energies the ECPSSR model
in its plain formulation or the empirical Paul and Sacher one (within its range
of applicability) exhibit the best performance. The scarceness of high energy
data prevents a definitive appraisal of the ECPSSR specialization for high
energies.
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Figure 21.2: Cross section for the ionisation of carbon K shell by proton im-
pact according to the various implemented modeling options, and comparison
with experimental data [23]: ECPSSR model, ECPSSR model with “united
atom” (UA) approximation, Hartree-Slater (HS) corrections and specialized
for high energies (HE); plane wave Born approximation (PWBA); empirical
models by Paul and Sacher and Kahoul et al. The curves reproducing some
of the model implementations can be hardly distinguished in the plot due to
their similarity.

Regarding the L shell, the ECPSSR model with “united atom” approx-
imation exhibits the best accuracy among the various implemented models;
its compatibility with experimental measurements at 95% confidence level
ranges from approximately 90% of the test cases for the L3 sub-shell to
approximately 65% for the L1 sub-shell. According to the results of the
categorical analysis, the ECPSSR model in its original formulation can be
considered an equivalently accurate alternative. The Orlic et al. model ex-
hibits the worst accuracy with respect to experimental data; its accuracy is
significantly different from the one of the ECPSSR model in the united atom
variant.
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In the current Geant4 release the implementation of the hadron im-
pact ionisation process (G4ImpactIonisation) is largely based on the orig-
inal G4hLowEnergyIonisation process [34],[35], [36]. Thanks to the adopted
component-based software design, the simulation of PIXE currently exploits
the existing Geant4 atomic relaxation [37] component to produce secondary
X-rays resulting from impact ionisation.
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Chapter 22

Shower Parameterizations
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22.1 Gflash Shower Parameterizations

The computing time needed for the simulation of high energy electromag-
netic showers can become very large, since it increases approximately linearly
with the energy absorbed in the detector. Using parameterizations instead
of individual particle tracking for electromagnetic (sub)showers can speed
up the simulations considerably without sacrificing much precision. The
Gflash package allows the parameterization of electron and positron show-
ers in homogeneous (for the time being) calorimeters and is based on the
parameterization described in Ref. [1] .

22.1.1 Parameterization Ansatz

The spatial energy distribution of electromagnetic showers is given by three
probability density functions (pdf),

dE(~r) = E f(t)dt f(r)dr f(φ)dφ, (22.1)

describing the longitudinal, radial, and azimuthal energy distributions. Here
t denotes the longitudinal shower depth in units of radiation length, r mea-
sures the radial distance from the shower axis in Molière units, and φ is the
azimuthal angle. The start of the shower is defined by the space point where
the electron or positron enters the calorimeter, which is different from the
original Gflash. A gamma distribution is used for the parameterization of the
longitudinal shower profile, f(t). The radial distribution f(r), is described
by a two-component ansatz. In φ, it is assumed that the energy is distributed
uniformly: f(φ) = 1/2π.

22.1.2 Longitudinal Shower Profiles

The average longitudinal shower profiles can be described by a gamma dis-
tribution [2]:

〈

1

E

dE(t)

dt

〉

= f(t) =
(βt)α−1β exp(−βt)

Γ(α)
. (22.2)

The center of gravity, 〈t〉, and the depth of the maximum, T , are calcu-
lated from the shape parameter α and the scaling parameter β according to:

〈t〉 =
α

β
(22.3)

T =
α− 1

β
. (22.4)
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In the parameterization all lengths are measured in units of radiation

length (X0), and energies in units of the critical energy (Ec = 2.66
(

X0
Z
A

)1.1
).

This allows material independence, since the longitudinal shower moments
are equal in different materials, according to Ref. [3]. The following equations
are used for the energy dependence of Thom and (αhom), with y = E/Ec and
t = x/X0, x being the longitudinal shower depth:

Thom = ln y + t1 (22.5)

αhom = a1 + (a2 + a3/Z) ln y. (22.6)

The y-dependence of the fluctuations can be described by:

σ = (s1 + s2 ln y)−1. (22.7)

The correlation between lnThom and lnαhom is given by:

ρ(lnThom, lnαhom) ≡ ρ = r1 + r2 ln y. (22.8)

From these formulae, correlated and varying parameters αi and βi are gen-
erated according to

(

lnTi

lnαi

)

=

(

〈lnT 〉
〈lnα〉

)

+ C

(

z1
z2

)

(22.9)

with

C =

(

σ(lnT ) 0
0 σ(lnα)

)





√

1+ρ
2

√

1−ρ
2

√

1+ρ
2

−
√

1−ρ
2





σ(lnα) and σ(lnT ) are the fluctuations of Thom and (αhom. The values of the
coefficients can be found in Ref. [1].

22.1.3 Radial Shower Profiles

For the description of average radial energy profiles,

f(r) =
1

dE(t)

dE(t, r)

dr
, (22.10)

a variety of different functions can be found in the literature. In Gflash the
following two-component ansatz, an extension of that in Ref.[4], was used:

f(r) = pfC(r) + (1 − p)fT (r) (22.11)

= p
2rR2

C

(r2 +R2
C)2

+ (1 − p)
2rR2

T

(r2 +R2
T )2
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with
0 ≤ p ≤ 1.

Here RC (RT ) is the median of the core (tail) component and p is a probabil-
ity giving the relative weight of the core component. The variable τ = t/T ,
which measures the shower depth in units of the depth of the shower max-
imum, is used in order to generalize the radial profiles. This makes the
parameterization more convenient and separates the energy and material de-
pendence of various parameters. The median of the core distribution, RC ,
increases linearly with τ . The weight of the core, p, is maximal around the
shower maximum, and the width of the tail, RT , is minimal at τ ≈ 1.

The following formulae are used to parameterize the radial energy density
distribution for a given energy and material:

RC,hom(τ) = z1 + z2τ (22.12)

RT,hom(τ) = k1{exp(k3(τ − k2)) + exp(k4(τ − k2))} (22.13)

phom(τ) = p1 exp

{

p2 − τ

p3

− exp

(

p2 − τ

p3

)}

(22.14)

The parameters z1 · · · p3 are either constant or simple functions of lnE or Z.
Radial shape fluctuations are also taken into account. A detailed expla-

nation of this procedure, as well as a list of all the parameters used in Gflash,
can be found in Ref. [1].

22.1.4 Gflash Performance

The parameters used in this Gflash implementation were extracted from full
simulation studies with Geant 3. They also give good results inside the
Geant4 fast shower framework when compared with the full electromagnetic
shower simulation. However, if more precision or higher particle energies are
required, retuning may be necessary. For the longitudinal profiles the dif-
ference between full simulation and Gflash parameterization is at the level
of a few percent. Because the radial profiles are slightly broader in Geant3
than in Geant4, the differences may reach > 10%. The gain in speed, on the
other hand, is impressive. The simulation of a 1 TeV electron in a PbWO4

cube is 160 times faster with Gflash. Gflash can also be used to parameter-
ize electromagnetic showers in sampling calorimeters. So far, however, only
homogeneous materials are supported.
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Chapter 23

Total Reaction Cross Section in
Nucleus-nucleus Reactions

The transportation of heavy ions in matter is a subject of much interest in
several fields of science. An important input for simulations of this process
is the total reaction cross section, which is defined as the total (σT ) minus
the elastic (σel) cross section for nucleus-nucleus reactions:

σR = σT − σel.

The total reaction cross section has been studied both theoretically and ex-
perimentally and several empirical parameterizations of it have been devel-
oped. In Geant4 the total reaction cross sections are calculated using four
such parameterizations: the Sihver[1], Kox[2], Shen[3] and Tripathi[4] formu-
lae. Each of these is discussed in order below.

23.1 Sihver Formula

Of the four parameterizations, the Sihver formula has the simplest form:

σR = πr2
0[A

1/3
p + A

1/3
t − b0[A

−1/3
p + A

−1/3
t ]]2 (23.1)

where Ap and At are the mass numbers of the projectile and target nuclei,
and

b0 = 1.581 − 0.876(A−1/3
p + A

−1/3
t ),

r0 = 1.36fm.
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It consists of a nuclear geometrical term (A
1/3
p + A

1/3
t ) and an overlap or

transparency parameter (b0) for nucleons in the nucleus. The cross section
is independent of energy and can be used for incident energies greater than
100 MeV/nucleon.

23.2 Kox and Shen Formulae

Both the Kox and Shen formulae are based on the strong absorption model.
They express the total reaction cross section in terms of the interaction radius
R, the nucleus-nucleus interaction barrier B, and the center-of-mass energy
of the colliding system ECM :

σR = πR2[1 − B

ECM
]. (23.2)

Kox formula: Here B is the Coulomb barrier (Bc) of the projectile-target
system and is given by

Bc =
ZtZpe

2

rC(A
1/3
t + A

1/3
p )

,

where rC = 1.3 fm, e is the electron charge and Zt, Zp are the atomic numbers
of the target and projectile nuclei. R is the interaction radius Rint which in
the Kox formula is divided into volume and surface terms:

Rint = Rvol +Rsurf .

Rvol and Rsurf correspond to the energy-independent and energy-dependent
components of the reactions, respectively. Collisions which have relatively
small impact parameters are independent of both energy and mass number.
These core collisions are parameterized by Rvol. Therefore Rvol can depend
only on the volume of the projectile and target nuclei:

Rvol = r0(A
1/3
t + A1/3

p ).

The second term of the interaction radius is a nuclear surface contribution
and is parameterized by

Rsurf = r0[a
A

1/3
t A

1/3
p

A
1/3
t + A

1/3
p

− c] +D.

The first term in brackets is the mass asymmetry which is related to
the volume overlap of the projectile and target. The second term c is
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an energy-dependent parameter which takes into account increasing surface
transparency as the projectile energy increases. D is the neutron-excess
which becomes important in collisions of heavy or neutron-rich targets. It is
given by

D =
5(At − Zt)Zp

ApAr

.

The surface component (Rsurf) of the interaction radius is actually not part
of the simple framework of the strong absorption model, but a better repro-
duction of experimental results is possible when it is used.

The parameters r0, a and c are obtained using a χ2 minimizing procedure
with the experimental data. In this procedure the parameters r0 and a were
fixed while c was allowed to vary only with the beam energy per nucleon. The
best χ2 fit is provided by r0 = 1.1 fm and a = 1.85 with the corresponding
values of c listed in Table III and shown in Fig. 12 of Ref. [2] as a function
of beam energy per nucleon. This reference presents the values of c only in
chart and figure form, which is not suitable for Monte Carlo calculations.
Therefore a simple analytical function is used to calculate c in Geant4. The
function is:

c = −10

x5
+ 2.0 for x ≥ 1.5

c = (− 10

1.55
+ 2.0) × (

x

1.5
)3 for x < 1.5,

x = log(KE),

where KE is the projectile kinetic energy in units of MeV/nucleon in the
laboratory system.

Shen formula: as mentioned earlier, this formula is also based on the strong
absorption model, therefore it has a structure similar to the Kox formula:

σR = 10πR2[1 − B

ECM
]. (23.3)

However, different parameterized forms for R and B are applied. The inter-
action radius R is given by

R = r0[A
1/3
t + A1/3

p + 1.85
A

1/3
t A

1/3
p

A
1/3
t + A

1/3
p

− C ′(KE)]

+α
5(At − Zt)Zp

ApAr

+ βE
−1/3
CM

A
1/3
t A

1/3
p

A
1/3
t + A

1/3
p
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where α, β and r0 are

α = 1fm

β = 0.176MeV 1/3 · fm

r0 = 1.1fm

In Ref. [3] as well, no functional form for C ′(KE) is given. Hence the same
simple analytical function is used by Geant4 to derive c values.

The second term B is called the nuclear-nuclear interaction barrier in the
Shen formula and is given by

B =
1.44ZtZp

r
− b

RtRp

Rt +Rp

(MeV )

where r, b, Rt and Rp are given by

r = Rt +Rp + 3.2fm

b = 1MeV · fm−1

Ri = 1.12A
1/3
i − 0.94A

−1/3
i (i = t, p)

The difference between the Kox and Shen formulae appears at energies below
30 MeV/nucleon. In this region the Shen formula shows better agreement
with the experimental data in most cases.

23.3 Tripathi formula

Because the Tripathi formula is also based on the strong absorption model
its form is similar to the Kox and Shen formulae:

σR = πr2
0(A

1/3
p + A

1/3
t + δE)2[1 − B

ECM

], (23.4)

where r0 = 1.1 fm. In the Tripathi formula B and R are given by

B =
1.44ZtZp

R
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R = rp + rt +
1.2(A

1/3
p + A

1/3
t )

E
1/3
CM

where ri is the equivalent sphere radius and is related to the rrms,i radius by

ri = 1.29rrms,i (i = p, t).

δE represents the energy-dependent term of the reaction cross section
which is due mainly to transparency and Pauli blocking effects. It is given
by

δE = 1.85S + (0.16S/E
1/3
CM) − CKE + [0.91(At − 2Zt)Zp/(ApAt)],

where S is the mass asymmetry term given by

S =
A

1/3
p A

1/3
t

A
1/3
p + A

1/3
t

.

This is related to the volume overlap of the colliding system. The last term
accounts for the isotope dependence of the reaction cross section and corre-
sponds to the D term in the Kox formula and the second term of R in the
Shen formula.

The term CKE corresponds to c in Kox and C ′(KE) in Shen and is given
by

CE = DPauli[1 − exp(−KE/40)] − 0.292 exp(−KE/792) × cos(0.229KE0.453).

Here DPauli is related to the density dependence of the colliding system,
scaled with respect to the density of the 12C+12C colliding system:

DPauli = 1.75
ρAp + ρAt

ρAC + ρAC

.

The nuclear density is calculated in the hard sphere model. DPauli simulates
the modifications of the reaction cross sections caused by Pauli blocking and
is being introduced to the Tripathi formula for the first time. The modifica-
tion of the reaction cross section due to Pauli blocking plays an important
role at energies above 100 MeV/nucleon. Different forms of DPauli are used
in the Tripathi formula for alpha-nucleus and lithium-nucleus collisions. For
alpha-nucleus collisions,

DPauli = 2.77 − (8.0 × 10−3At) + (1.8 × 10−5A2
t )

−0.8/{1 + exp[(250 −KE)/75]}
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For lithium-nucleus collisions,

DPauli = DPauli/3.

Note that the Tripathi formula is not fully implemented in Geant4 and can
only be used for projectile energies less than 1 GeV/nucleon.

23.4 Representative Cross Sections

Representative cross section results from the Sihver, Kox, Shen and Tripathi
formulae in Geant4 are displayed in Table I and compared to the experimental
measurements of Ref. [2].

23.5 Tripathi Formula for ”light” Systems

For nuclear-nuclear interactions in which the projectile and/or target are
light, Tripathi et al [6] propose an alternative algorithm for determining the
interaction cross section (implemented in the new class G4TripathiLightCrossSection).
For such systems, Eq.23.4 becomes:

σR = πr2
0[A

1/3
p + A

1/3
t + δE ]2(1 −RC

B

ECM

)Xm (23.5)

RC is a Coulomb multiplier, which is added since for light systems Eq. 23.4
overestimates the interaction distance, causing B (in Eq. 23.4) to be under-
estimated. Values for RC are given in Table 23.2.

Xm = 1 −X1 exp

(

− E

X1SL

)

(23.6)

where:

X1 = 2.83 −
(

3.1 × 10−2
)

AT +
(

1.7 × 10−4
)

A2
T (23.7)

except for neutron interactions with 4He, for which X1 is better approximated
to 5.2, and the function SL is given by:

SL = 1.2 + 1.6

[

1 − exp

(

−E

15

)]

(23.8)

For light nuclear-nuclear collisions, a slightly more general expression for CE

is used:
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CE = D

[

1 − exp

(

−E

T1

)]

− 0.292 exp

(

− E

792

)

· cos
(

0.229E0.453
)

(23.9)

D and T1 are dependent on the interaction, and are defined in table 23.3.

23.6 Status of this document
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Bibliography

[1] L. Sihver et al., Phys. Rev. C47, 1225 (1993).

[2] Kox et al. Phys. Rev. C35, 1678 (1987).

[3] Shen et al. Nucl. Phys. A491, 130 (1989).

[4] Tripathi et al, NASA Technical Paper 3621 (1997).

[5] Jaros et al, Phys. Rev. C 18 2273 (1978).

[6] R K Tripathi, F A Cucinotta, and J W Wilson, ”Universal parameter-
ization of absorption cross-sections - Light systems,” NASA Technical
Paper TP-1999-209726, 1999.

340



Table 23.1: Representative total reaction cross sections

Proj. Target Elab Exp. Results Sihver Kox Shen Tripathi
[MeV/n] [mb]

12C 12C 30 1316±40 — 1295.04 1316.07 1269.24
83 965±30 — 957.183 969.107 989.96
200 864±45 868.571 885.502 893.854 864.56
300 858±60 868.571 871.088 878.293 857.414
8701 939±50 868.571 852.649 857.683 939.41
21001 888±49 868.571 846.337 850.186 936.205

27Al 30 1748±85 — 1801.4 1777.75 1701.03
83 1397±40 — 1407.64 1386.82 1405.61
200 1270±70 1224.95 1323.46 1301.54 1264.26
300 1220±85 1224.95 1306.54 1283.95 1257.62

89Y 30 2724±300 — 2898.61 2725.23 2567.68
83 2124±140 — 2478.61 2344.26 2346.54
200 1885±120 2156.47 2391.26 2263.77 2206.01
300 1885±150 2156.47 2374.17 2247.55 2207.01

16O 27Al 30 1724±80 — 1965.85 1935.2 1872.23
89Y 30 2707±330 — 3148.27 2957.06 2802.48

20Ne 27Al 30 2113±100 — 2097.86 2059.4 2016.32
100 1446±120 1473.87 1684.01 1658.31 1667.17
300 1328±120 1473.87 1611.88 1586.17 1559.16

108Ag 300 2407±2002 2730.69 3095.18 2939.86 2893.12

1. Data measured by Jaros et al. [5]
2. Natural silver was used in this measurement.
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Table 23.2: Coulomb multiplier for light systems [6].

System RC

p + d 13.5
p + 3He 21
p + 4He 27
p + Li 2.2
d + d 13.5

d + 4He 13.5
d + C 6.0

4He + Ta 0.6
4He + Au 0.6
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Table 23.3: Parameters D and T1 for light systems [6].

System T1 [MeV] D G [MeV]
(4He + X only)

p + X 23 1.85 + 0.16

1+exp( 500−E
200 )

(Not applicable)

n + X 18 1.85 + 0.16

1+exp( 500−E
200 )

(Not applicable)

d + X 23 1.65 + 0.1

1+exp( 500−E
200 )

(Not applicable)

3He + X 40 1.55 (Not applicable)

4He + 4He 40

D = 2.77 − 8.0 × 10−3AT

+1.8 × 10−5A2
T

− 0.8

1+exp( 250−E
G )

300

4He + Be 25 (as for 4He + 4He) 300
4He + N 40 (as for 4He + 4He) 500
4He + Al 25 (as for 4He + 4He) 300
4He + Fe 40 (as for 4He + 4He) 300

4He + X (general) 40 (as for 4He + 4He) 75
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Chapter 24

Coherent elastic scattering

24.1 Nucleon-Nucleon elastic Scattering

The classes G4LEpp and G4LEnp provide data-driven models for proton-
proton (or neutron-neutron) and neutron-proton elastic scattering over the
range 10-1200 MeV. Final states (primary and recoil particle) are derived by
sampling from tables of the cumulative distribution function of the centre-
of-mass scattering angle, tabulated for a discrete set of lab kinetic energies
from 10 MeV to 1200 MeV. The CDF’s are tabulated at 1 degree intervals
and sampling is done using bi-linear interpolation in energy and CDF values.
The data are derived from differential cross sections obtained from the SAID
database, R. Arndt, 1998.

In class G4LEpp there are two data sets: one including Coulomb ef-
fects (for p-p scattering) and one with no Coulomb effects (for n-n scat-
tering or p-p scattering with Coulomb effects suppressed). The method
G4LEpp::SetCoulombEffects can be used to select the desired data set:

• SetCoulombEffects(0): No Coulomb effects (the default)

• SetCoulombEffects(1): Include Coulomb effects

The recoil particle will be generated as a new secondary particle. In class
G4LEnp, the possiblity of a charge-exchange reaction is included, in which
case the incident track will be stopped and both the primary and recoil
particles will be generated as secondaries.
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Chapter 25

Hadron-nucleus Elastic
Scattering at Medium and High
Energy

25.1 Method of Calculation

The Glauber model [1] is used as an alternative method of calculating dif-
ferential cross sections for elastic and quasi-elastic hadron-nucleus scattering
at high and intermediate energies.

For high energies this includes corrections for inelastic screening and for
quasi-elastic scattering the exitation of a discrete level or a state in the con-
tinuum is considered.

The usual expression for the Glauber model amplitude for multiple scat-
tering was used

F (q) =
ik

2π

∫

d2be
~q·~bM(~b). (25.1)

Here M(~b) is the hadron-nucleus amplitude in the impact parameter repre-
sentation

M(~b) = 1 − [1 − e−A
R

d3rΓ(~b−~s)ρ(~r)]A, (25.2)

k is the incident particle momentum, ~q = ~k′ − ~k is the momentum transfer,
and ~k′ is the scattered particle momentum. Note that |~q|2 = −t - invari-

ant momentum transfer squared in the center of mass system. Γ(~b) is the
hadron-nucleon amplitude of elastic scattering in the impact-parameter rep-
resentation
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Γ(~b) =
1

2πikhN

∫

d~qe−
~q·~bf(~q). (25.3)

The exponential parameterization of the hadron-nucleon amplitude is
usually used:

f(~q) =
ikhNσhN

2π
e−0.5q2B. (25.4)

Here σhN = σhN
tot (1 − iα), σhN

tot is the total cross section of a hadron-nucleon
scattering, B is the slope of the diffraction cone and α is the ratio of the real
to imaginary parts of the amplitude at q = 0. The value khN is the hadron
momentum in the hadron-nucleon coordinate system.

The important difference of these calculations from the usual ones is that
the two-gaussian form of the nuclear density was used

ρ(r) = C(e−(r/R1)2 − pe−(r/R2)2), (25.5)

where R1, R2 and p are the fitting parameters and C is a normalization
constant.

This density representation allows the expressions for amplitude and dif-
ferential cross section to be put into analytical form. It was earlier used for
light [2, 3] and medium [4] nuclei. Described below is an extension of this
method to heavy nuclei. The form 25.5 is not physical for a heavy nucleus,
but nevertheless works rather well (see figures below). The reason is that
the nucleus absorbs the hadrons very strongly, especially at small impact
parameters where the absorption is full. As a result only the peripherial part
of the nucleus participates in elastic scattering. Eq. 25.5 therefore describes
only the edge of a heavy nucleus.

Substituting Eqs. 25.5 and 25.4 into Eqs. 25.1, 25.2 and 25.3 yields the
following formula

F (q) =
ikπ

2

A
∑

k=1

(−1)k

(

A

k

)

[
σhN

2π(R3
1 − pR3

2)
]k

k
∑

m=0

(−1)m

(

k

m

)[

R3
1

R2
1 + 2B

]k−m

×
[

pR3
2

R2
2 + 2B

]m(
m

R2
2 + 2B

+
k −m

R2
1 + 2B

)−1

× exp

[

−−q2

4

(

m

R2
2 + 2B

+
k −m

R2
1 + 2B

)−1
]

. (25.6)
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An analogous procedure can be used to get the inelastic screening cor-
rections to the hadron-nucleus amplitude ∆M(~b) [5]. In this case an inter-
mediate inelastic diffractive state is created which rescatters on the nucleons
of the nucleus and then returns into the initial hadron. Hence it is ness-
esary to integrate the production cross section over the mass distribution of
the exited system dσdiff

dtdM2
x
. The expressions for the corresponding amplitude

are quite long and so are not presented here. The corrections for the total
cross-sections can be found in [5].

The full amplitude is the sum M(~b) + ∆M(~b).
The differential cross section is connected with the amplitude in the fol-

lowing way

dσ

dΩCM

= |F (q)|2 , dσ

|dt| =
dσ

dq2
CM

=
π

k2
CM

|F (q)|2 . (25.7)

The main energy dependence of the hadron-nucleus elastic scattering
cross section comes from the energy dependence of the parameters of hadron-
nucleon scattering (σhN

tot α, B and dσdiff

dtdM2
x
). At interesting energies these param-

eters were fixed at their well-known values. The fitting of the nuclear density
parameters was performed over a wide range of atomic numbers (A = 4−208)
using experimental data on proton-nuclei elastic scattering at a kinetic energy
of Tp = 1GeV .

The fitting was perfomed both for individual nuclei and for the entire set
of nuclei at once.

It is necessary to note that for every nucleus an optimal set of density
parameters exists and it differs slightly from the one derived for the full set
of nuclei.

A comparision of the phenomenological cross sections [6] with experiment
is presented in Figs. 25.1 - 25.9

In this comparison, the individual nuclei parameters were used. The
experimental data were obtained in Gatchina (Russia) and in Saclay (France)
[6]. The horizontal axis is the scattering angle in the center of mass system

ΘCM and the vertical axis is dσ
dΩCM

in mb
Ster .

Comparisions were also made for p4He elastic scatering at T=1GeV [7],
45GeV and 301GeV [3]. The resulting cross sections dσ

d|t| are shown in the
Figs. 25.10 - 25.12.

In order to generate events the distribution function F of a corresponding
process must be known. The differential cross section is proportional to the
density distribution. Therefore to get the distribution function it is sufficient
to integrate the differential cross section and normalize it:
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F(q2) =

q2
∫

0

d(q2)
dσ

d(q2)

q2
max
∫

0

d(q2)
dσ

d(q2)
.

(25.8)

Expressions 25.6 and 25.7 allow analytic integration in Eq. 25.8 but the
result is too long to be given here.

For light and medium nuclei the analytic expression is more convenient
for calculations than the numerical integration of Eq. 25.8, but for heavy
nuclei the latter is preferred due to the large number of terms in the analytic
expression.

25.2 Status of this document

18.06.04 created by Nikolai Starkov
19.06.04 re-written for spelling and grammar by D.H. Wright
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Figure 25.1: Elastic proton scattering on 9Be at 1 GeV
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Figure 25.2: Elastic proton scattering on 11B at 1 GeV
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Figure 25.3: Elastic proton scattering on 12C at 1 GeV
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Figure 25.4: Elastic proton scattering on 16O at 1 GeV
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Figure 25.5: Elastic proton scattering on 28Si at 1 GeV
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Figure 25.6: Elastic proton scattering on 40Ca at 1 GeV
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Figure 25.7: Elastic proton scattering on 58Ni at 1 GeV
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Figure 25.8: Elastic proton scattering on 90Zr at 1 GeV
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Figure 25.9: Elastic proton scattering on 208Pb at 1 GeV
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Figure 25.10: Elastic proton scattering on 4He at 1 GeV
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Figure 25.11: Elastic proton scattering on 4He at 45 GeV
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Figure 25.12: Elastic proton scattering on 4He at 301 GeV
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Chapter 26

Interactions of Stopping
Particles

26.1 Complementary parameterised and the-

oretical treatment

Absorption of negative pions and kaons at rest from a nucleus is described
in literature [1], [2], [3], [4] as consisting of two main components:

• a primary absorption process, involving the interaction of the incident
stopped hadron with one or more nucleons of the target nucleus;

• the deexcitation of the remnant nucleus, left in an excitated state as a
result of the occurrence of the primary absorption process.

This interpretation is supported by several experiments [5], [6], [7], [8], [9],
[10], [11], that have measured various features characterizing these processes.
In many cases the experimental measurements are capable to distinguish the
final products originating from the primary absorption process and those
resulting from the nuclear deexcitation component.

A set of stopped particle absorption processes is implemented in GEANT4,
based on this two-component model (PiMinusAbsorptionAtRest and Kaon-
MinusAbsorptionAtRest classes, for π− and K− respectively. Both imple-
mentations adopt the same approach: the primary absorption component
of the process is parameterised, based on available experimental data; the
nuclear deexcitation component is handled through the theoretical models
described elsewhere in this Manual.
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26.1.1 Pion absorption at rest

The absorption of stopped negative pions in nuclei is interpreted [1], [2],
[3], [4] as starting with the absorption of the pion by two or more correlated
nucleons; the total energy of the pion is transferred to the absorbing nucleons,
which then may leave the nucleus directly, or undergo final-state interactions
with the residual nucleus. The remaining nucleus de-excites by evaporation
of low energetic particles.

G4PiMinusAbsorptionAtRest generates the primary absorption compo-
nent of the process through the parameterisation of existing experimental
data; the primary absorption component is handled by class G4PiMinusStopAbsorption.
In the current implementation only absorption on a nucleon pair is consid-
ered, while contributions from absorption on nucleon clusters are neglected;
this approximation is supported by experimental results [1], [13] showing that
it is the dominating contribution.

Several features of stopped pion absorption are known from experimental
measurements on various materials [5], [6], [7], [8], [9], [10], [11], [12]:

• the average number of nucleons emitted, as resulting from the primary
absorption process;

• the ratio of nn vs np as nucleon pairs involved in the absorption process;

• the energy spectrum of the resulting nucleons emitted and their opening
angle distribution.

The corresponding final state products and related distributions are gener-
ated according to a parameterisation of the available experimental measure-
ments listed above. The dependence on the material is handled by a strategy
pattern: the features pertaining to material for which experimental data are
available are treated in G4PiMinusStopX classes (where X represents an el-
ement), inheriting from G4StopMaterial base class. In case of absorption on
an element for which experimental data are not available, the experimental
distributions for the elements closest in Z are used.

The excitation energy of the residual nucleus is calculated by difference
between the initial energy and the energy of the final state products of the
primary absorption process.

Another strategy handles the nucleus deexcitation; the current default
implementation consists in handling the deexcitatoin component of the pro-
cess through the evaporation model described elsewhere in this Manual.
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Chapter 27

Parametrization Driven Models

27.1 Introduction

Two sets of parameterized models are provided for the simulation of high
energy hadron-nucleus interactions. The so-called “low energy model” is in-
tended for hadronic projectiles with incident energies between 1 GeV and
25 GeV, while the “high energy model” is valid for projectiles between 25
GeV and 10 TeV. Both are based on the well-known GHEISHA package of
GEANT3. The physics underlying these models comes from an old-fashioned
multi-chain model in which the incident particle collides with a nucleon inside
the nucleus. The final state of this interaction consists of a recoil nucleon, the
scattered incident particle, and possibly many hadronic secondaries. Hadron
production is approximated by the formation zone concept, in which the
interacting quark-partons require some time and therefore some range to
hadronize into real particles. All of these particles are able to re-interact
within the nucleus, thus developing an intra-nuclear cascade.

In these models only the first hadron-nucleon collision is simulated in detail.
The remaining interactions within the nucleus are simulated by generating
additional hadrons and treating them as secondaries from the initial collision.
The numbers, types and distributions of the extra hadrons are determined
by functions which were fitted to experimental data or which reproduce gen-
eral trends in hadron-nucleus collisions. Numerous tunable parameters are
used throughout these models to obtain reasonable physical behavior. This
restricts the use of these models as generators for hadron-nucleus interac-
tions because it is not always clear how the parameters relate to physical
quantities. On the other hand a precise simulation of minimum bias events
is possible, with significant predictive power for calorimetry.
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27.2 Low Energy Model

In the low energy parameterized model the mean number of hadrons pro-
duced in a hadron-nucleus collision is given by

Nm = C(s)A1/3Nic (27.1)

where A is the atomic mass, C(s) is a function only of the center of mass
energy s, and Nic is approximately the number of hadrons generated in the
initial collision. Assuming that the collision occurs at the center of the nu-
cleus, each of these hadrons must traverse a distance roughly equal to the
nuclear radius. They may therefore potentially interact with a number of
nucleons proportional to A1/3. If the energy-dependent cross section for in-
teraction in the nuclear medium is included in C then Eq. 27.1 can be
interpreted as the number of target nucleons excited by the initial collision.
Some of these nucleons are added to the intra-nuclear cascade. The rest,
especially at higher momenta where nucleon production is suppressed, are
replaced by pions and kaons.

Once the mean number of hadrons, Nm is calculated, the total number of
hadrons in the intra-nuclear cascade is sampled from a Poisson distribution
about the mean. Sampling from additional distribution functions provides

• the combined multiplicity w(~a, ni) for all particles i, i = π+, π0, π−, p, n, .....,
including the correlations between them,

• the additive quantum numbers E (energy), Q (charge), S (strangeness)
and B (baryon number) in the entire phase space region, and

• the reaction products from nuclear fission and evaporation.

A universal function f(~b, x/pT , mT ) is used for the distribution of the addi-
tive quantum numbers, where x is the Feynman variable, pT is the transverse
momentum and mT is the transverse mass. ~a and ~b are parameter vectors,
which depend on the particle type of the incoming beam and the atomic
number A of the target. Any dependence on the beam energy is completely
restricted to the multiplicity distribution and the available phase space.

The low energy model can be applied to the π+, π−, K+, K−, K0 and K0

mesons. It can also be applied to the baryons p, n, Λ, Σ+, Σ−, Ξ0, Ξ−, Ω−,
and their anti-particles, as well as the light nuclei, d, t and α. The model can
in principal be applied down to zero projectile energy, but the assumptions
used to develop it begin to break down in the sub-GeV region.
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27.3 High Energy Model

The high energy model is valid for incident particle energies from 10-20 GeV
up to 10-20 TeV. Individual implementations of the model exist for π+, π−,
K+, K−, K0

S and K0
L mesons, and for p, n, Λ, Σ+, Σ−, Ξ0, Ξ−, and Ω−

baryons and their anti-particles.

27.3.1 Initial Interaction

In a given implementation, the generation of the final state begins with the
selection of a nucleon from the target nucleus. The pion multiplicities result-
ing from the initial interaction of the incident particle and the target nucleon
are then calculated. The total pion multiplicity is taken to be a function of
the log of the available energy in the center of mass of the incident particle
and target nucleon, and the π+, π− and π0 multiplicities are given by the
KNO distribution.

From this initial set of particles, two are chosen at random to be replaced
with either a kaon-anti-kaon pair, a nucleon-anti-nucleon pair, or a kaon and
a hyperon. The relative probabilities of these options are chosen according to
a logarithmically interpolated table of strange-pair and nucleon-anti-nucleon
pair cross sections. The particle types of the pair are chosen according to
averaged, parameterized cross sections typical at energies of a few GeV. If
the increased mass of the new pair causes the total available energy to be
exceeded, particles are removed from the initial set as necessary.

27.3.2 Intra-nuclear Cascade

The cascade of these particles through the nucleus, and the additional parti-
cles generated by the cascade are simulated by several models. These include
high energy cascading, high energy cluster production, medium energy cas-
cading and medium energy cluster production. For each event, high energy
cascading is attempted first. If the available energy is sufficient, this method
will likely succeed in producing the final state and the interaction will have
been completely simulated. If it fails due to lack of energy or other reasons,
the remaining models are called in succession until the final state is produced.
If none of these methods succeeds, quasi-elastic scattering is attempted and
finally, as a last resort, elastic scattering is performed. These models are
responsible for assigning final state momenta to all generated particles, and
for checking that, on average, energy and momentum are conserved.
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27.3.3 High Energy Cascading

As particles from the initial collision cascade through the nucleus more par-
ticles will be generated. The number and type of these particles are param-
eterized in terms of the CM energy of the initial particle-nucleon collision.
The number of particles produced from the cascade is given roughly by

Nm = C(s)[A1/3 − 1]Nic (27.2)

where A is the atomic mass, C(s) is a function only of s, the square of
the center of mass energy, and Nic is approximately the number of hadrons
generated in the initial collision. This can be understood qualitatively by
assuming that the collision occurs, on average, at the center of the nucleus.
Then each of the Nic hadrons must traverse a distance roughly equal to
the nuclear radius. They may therefore potentially interact with a number
of nucleons proportional to A1/3. If the energy-dependent cross section for
interaction in the nuclear medium is included in C(s) then Eq. 27.2 can be
interpreted as the number of target nucleons excited by the initial collision
and its secondaries.

Some of these nucleons are added to the intra-nuclear cascade. The rest,
especially at higher momenta where nucleon production is suppressed, are
replaced by pions, kaons and hyperons. The mean of the total number of
hadrons generated in the cascade is partitioned into the mean number of
nucleons, Nn, pions, Nπ and strange particles, Ns. Each of these is used as
the mean of a Poisson distribution which produces the randomized number
of each type of particle.

The momenta of these particles are generated by first dividing the final
state phase space into forward and backward hemispheres, where forward is
in the direction of the original projectile. Each particle is assigned to one
hemisphere or the other according to the particle type and origin:

• the original projectile, or its substitute if charge or strangeness ex-
change occurs, is assigned to the forward hemisphere and the target
nucleon is assigned to the backward hemisphere;

• the remainder of the particles from the initial collision are assigned at
random to either hemisphere;

• pions and strange particles generated in the intra-nuclear cascade are
assigned 80% to the backward hemisphere and 20% to the forward
hemisphere;

• nucleons generated in the intra-nuclear cascade are all assigned to the
backward hemisphere.
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It is assumed that energy is separately conserved for each hemisphere. If
too many particles have been added to a given hemisphere, randomly chosen
particles are deleted until the energy budget is met. The final state momenta
are then generated according to two different algorithms, a cluster model for
the backward nucleons from the intra-nuclear cascade, and a fragmentation
model for all other particles. Several corrections are then applied to the final
state particles, including momentum re-scaling, effects due to Fermi motion,
and binding energy subtraction. Finally the de-excitation of the residual nu-
cleus is treated by adding lower energy protons, neutrons and light ions to
the final state particle list.

Fragmentation Model. This model simulates the fragmentation of the
highly excited hadrons formed in the initial projectile-nucleon collision. Par-
ticle momenta are generated by first sampling the average transverse mo-
mentum pT from an exponential distribution:

exp[−apT
b] (27.3)

where

1.70 ≤ a ≤ 4.00; 1.18 ≤ b ≤ 1.67. (27.4)

The values of a and b depend on particle type and result from a parame-
terization of experimental data. The value selected for pT is then used to set
the scale for the determination of x, the fraction of the projectile’s momen-
tum carried by the fragment. The sampling of x assumes that the invariant
cross section for the production of fragments can be given by

E
d3σ

dp3
=

K

(M2x2 + pT
2)3/2

(27.5)

where E and p are the energy and momentum, respectively, of the produced
fragment, and K is a proportionality constant. M is the average transverse
mass which is parameterized from data and varies from 0.75 GeV to 0.10
GeV, depending on particle type. Taking m to be the mass of the fragment
and noting that

pz ≃ xEproj (27.6)

in the forward hemisphere and

pz ≃ xEtarg (27.7)

in the backward hemisphere, Eq. 27.5 can be re-written to give the sampling
function for x:

d3σ

dp3
=

K

(M2x2 + pT
2)3/2

1
√

m2 + pT
2 + x2E2

i

, (27.8)
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where i = proj or targ.
x-sampling is performed for each fragment in the final-state candidate

list. Once a fragment’s momentum is assigned, its total energy is checked to
see if it exceeds the energy budget in its hemisphere. If so, the momentum
of the particle is reduced by 10%, as is pT and the integral of the x-sampling
function, and the momentum selection process is repeated. If the offending
particle starts out in the forward hemisphere, it is moved to the backward
hemisphere, provided the budget for the backward hemisphere is not ex-
ceeded. If, after six iterations, the particle still does not fit, it is removed
from the candidate list and the kinetic energies of the particles selected up to
this point are reduced by 5%. The entire procedure is repeated up to three
times for each fragment.

The incident and target particles, or their substitutes in the case of charge-
or strangeness-exchange, are guaranteed to be part of the final state. They
are the last particles to be selected and the remaining energy in their respec-
tive hemispheres is used to set the pz components of their momenta. The pT

components selected by x-sampling are retained.

Cluster Model. This model groups the nucleons produced in the intra-
nuclear cascade together with the target nucleon or hyperon, and treats
them as a cluster moving forward in the center of mass frame. The clus-
ter disintegrates in such a way that each of its nucleons is given a kinetic
energy

40 < Tnuc < 600MeV (27.9)

if the kinetic energy of the original projectile, Tinc, is 5 GeV or more. If Tinc

is less than 5 GeV,

40(Tinc/5GeV)2 < Tnuc < 600(Tinc/5GeV)2. (27.10)

In each range the energy is sampled from a distribution which is skewed
strongly toward the high energy limit. In addition, the angular distribution
of the nucleons is skewed forward in order to simulate the forward motion of
the cluster.

Momentum Re-scaling. Up to this point, all final state momenta have
been generated in the center of mass of the incident projectile and the target
nucleon. However, the interaction involves more than one nucleon as evi-
denced by the intra-nuclear cascade. A more correct center of mass should
then be defined by the incident projectile and all of the baryons generated by
the cascade, and the final state momenta already calculated must be re-scaled
to reflect the new center of mass.
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This is accomplished by correcting the momentum of each particle in the
final state candidate list by the factor T1/T2. T2 is the total kinetic energy in
the lab frame of all the final state candidates generated assuming a projectile-
nucleon center of mass. T1 is the total kinetic energy in the lab frame of the
same final state candidates, but whose momenta have been calculated by the
phase space decay of an imaginary particle. This particle has the total CM
energy of the original projectile and a cluster consisting of all the baryons
generated from the intra-nuclear cascade.

Corrections. Part of the Fermi motion of the target nucleons is taken into
account by smearing the transverse momentum components of the final state
particles. The Fermi momentum is first sampled from an average distribu-
tion and a random direction for its transverse component is chosen. This
component, which is proportional to the number of baryons produced in the
cascade, is then included in the final state momenta.

Each final state particle must escape the nucleus, and in the process
reduce its kinetic energy by the nuclear binding energy. The binding energy
is parameterized as a function of A:

EB = 25MeV

(

A − 1

120

)

e−(A−1)/120). (27.11)

Another correction reduces the kinetic energy of final state π0s when the
incident particle is a π+ or π−. This reduction increases as the log of the
incident pion energy, and is done to reproduce experimental data. In order to
conserve energy on average, the energy removed from the π0s is re-distributed
among the final state π+s, π−s and π0s.

Nuclear De-excitation. After the generation of initial interaction and
cascade particles, the target nucleus is left in an excited state. De-excitation
is accomplished by evaporating protons, neutrons, deuterons, tritons and
alphas from the nucleus according to a parameterized model. The total
kinetic energy given to these particles is a function of the incident particle
kinetic energy:

Tevap = 7.716GeV

(

A − 1

120

)

F(T)e−F(T)−(A−1)/120, (27.12)

where
F (T ) = max[0.35 + 0.1304ln(T), 0.15], (27.13)
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and

T = 0.1GeV for Tinc < 0.1GeV (27.14)

T = Tinc for 0.1GeV ≤ Tinc ≤ 4GeV (27.15)

T = 4GeV for Tinc > 4GeV. (27.16)

The mean energy allocated for proton and neutron emission is Tpn and that
for deuteron, triton and alpha emission is Tdta. These are determined by
partitioning Tevap :

Tpn = TevapR , Tdta = Tevap(1 − R) with

R = max[1 − (T/4GeV)2, 0.5]. (27.17)

The simulated values of Tpn and Tdta are sampled from normal distributions
about Tpn and Tdta and their sum is constrained not to exceed the incident
particle’s kinetic energy, Tinc.

The number of proton and neutrons emitted, Npn, is sampled from a
Poisson distribution about a mean which depends on R and the number of
baryons produced in the intranuclear cascade. The average kinetic energy
per emitted particle is then Tav = Tpn/Npn. Tav is used to parameterize an
exponential which qualitatively describes the nuclear level density as a func-
tion of energy. The simulated kinetic energy of each evaporated proton or
neutron is sampled from this exponential. Next, the nuclear binding energy
is subtracted and the final momentum is calculated assuming an isotropic an-
gular distribution. The number of protons and neutrons emitted is (Z/A)Npn

and (N/A)Npn, respectively.
A similar procedure is followed for the deuterons, tritons and alphas. The

number of each species emitted is 0.6Ndta, 0.3Ndta and 0.1Ndta, respectively.

Tuning of the High Energy Cascade The final stage of the high energy
cascade method involves adjusting the momenta of the produced particles
so that they agree better with data. Currently, five such adjustments are
performed, the first three of which apply only to charged particles incident
upon light and medium nuclei at incident energies above ≃ 65 GeV.

• If the final state particle is a nucleon or light ion with a momentum of
less than 1.5 GeV/c, its momentum will be set to zero some fraction
of the time. This fraction increases with the logarithm of the kinetic
energy of the incident particle and decreases with log10(A).
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• If the final state particle with the largest momentum happens to be a
π0, its momentum is exchanged with either the π+ or π− having the
largest momentum, depending on whether the incident particle charge
is positive or negative.

• If the number of baryons produced in the cascade is a significant frac-
tion (> 0.3) of A, about 25% of the nucleons and light ions already
produced will be removed from the final particle list, provided their
momenta are each less than 1.2 GeV/c.

• The final state of the interaction is of course heavily influenced by the
quantum numbers of the incident particle, particularly in the forward
direction. This influence is enforced by compiling, for each forward-
going final state particle, the sum

Sforward = ∆M + ∆Q + ∆S + ∆B, (27.18)

where each ∆ corresponds to the absolute value of the difference of the
quantum number between the incident particle and the final state par-
ticle. M , Q, S, and B refer to mass, charge, strangeness and baryon
number, respectively. For final state particles whose character is signif-
icantly different from the incident particle (S is large), the momentum
component parallel to the incident particle momentum is reduced. The
transverse component is unchanged. As a result, large-S particles are
driven away from the axis of the hadronic shower. For backward-going
particles, a similar procedure is followed based on the calculation of
Sbackward.

• Conservation of energy is imposed on the particles in the final state list
in one of two ways, depending on whether or not a leading particle has
been chosen from the list. If all the particles differ significantly from
the incident particle in momentum, mass and other quantum numbers,
no leading particle is chosen and the kinetic energy of each particle is
scaled by the same correction factor. If a leading particle is chosen,
its kinetic energy is altered to balance the total energy, while all the
remaining particles are unaltered.

27.3.4 High Energy Cluster Production

As in the high energy cascade model, the high energy cluster model randomly
assigns particles from the initial collision to either a forward- or backward-
going cluster. Instead of performing the fragmentation process, however,
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the two clusters are treated kinematically as the two-body final state of the
hadron-nucleon collision. Each cluster is assigned a kinetic energy T which
is sampled from a distribution

exp[−aT 1/b] (27.19)

where both a and b decrease with the number of particles in a cluster. If the
combined total energy of the two clusters is larger than the center of mass
energy, the energy of each cluster is reduced accordingly. The center of mass
momentum of each cluster can then be found by sampling the 4-momentum
transfer squared, t, from the distribution

exp[t(4.0 + 1.6ln(pinc))] (27.20)

where t < 0 and pinc is the incident particle momentum. Then,

cosθ = 1 +
t− (Ec −Ei)

2 + (pc − pi)
2

2pcpi
, (27.21)

where the subscripts c and i refer to the cluster and incident particle, re-
spectively. Once the momentum of each cluster is calculated, the cluster
is decomposed into its constituents. The momenta of the constituents are
determined using a phase space decay algorithm.

The particles produced in the intra-nuclear cascade are grouped into a
third cluster. They are treated almost exactly as in the high energy cascade
model, where Eq. 27.2 is used to estimate the number of particles produced.
The main difference is that the cluster model does not generate strange par-
ticles from the cascade. Nucleon suppression is also slightly stronger, leading
to relatively higher pion production at large incident momenta. Kinetic en-
ergy and direction are assigned to the cluster as described in the cluster
model paragraph in the previous section.

The remaining steps to produce the final state particle list are the same
as those in high energy cascading:

• re-scaling of the momenta to reflect a center of mass which involves the
cascade baryons,

• corrections due to Fermi motion and binding energy,

• reduction of final state π0 energies,

• nuclear de-excitation and

• high energy tuning.
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27.3.5 Medium Energy Cascading

The medium energy cascade algorithm is very similar to the high energy cas-
cade algorithm, but it may be invoked for lower incident energies (down to 1
GeV). The primary difference between the two codes is the parameterization
of the fragmentation process. The medium energy cascade samples larger
transverse momenta for pions and smaller transverse momenta for kaons and
baryons.

A second difference is in the treatment of the cluster consisting of particles
generated in the cascade. Instead of parameterizing the kinetic energies and
angles of the outgoing particles, the phase space decay approach is used.

Another difference is that the high energy tuning of the final state distri-
bution is not performed.

27.3.6 Medium Energy Cluster Production

The medium energy cluster algorithm is nearly identical to the high energy
cluster algorithm, but it may be invoked for incident energies down to 10
MeV. There are three significant differences at medium energy: less nucleon
suppression, fewer particles generated in the intra-nuclear cascade, and no
high energy tuning of the final state particle distributions.

27.3.7 Elastic and Quasi-elastic Scattering

When no additional particles are produced in the initial interaction, either
elastic or quasi-elastic scattering is performed. If there is insufficient energy
to induce an intra-nuclear cascade, but enough to excite the target nucleus,
quasi-elastic scattering is performed. The final state is calculated using two-
body scattering of the incident particle and the target nucleon, with the
scattering angle in the center of mass sampled from an exponential:

exp[−2bpinpcm(1 − cosθ)]. (27.22)

Here pin is the incident particle momentum, pcm is the momentum in the
center of mass, and b is a logarithmic function of the incident momentum
in the lab frame as parameterized from data. As in the cascade and cluster
production models, the residual nucleus is then de-excited by evaporating
nucleons and light ions.

If the incident energy is too small to excite the nucleus, elastic scattering
is performed. The angular distribution of the scattered particle is sampled
from the sum of two exponentials whose parameters depend on A.
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27.4 Status of this document

7.10.02 re-written by D.H. Wright
1.11.04 new section on high energy model by D.H. Wright
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Chapter 28

Parton string model.

28.1 Reaction initial state simulation.

28.1.1 Allowed projectiles and bombarding energy range

for interaction with nucleon and nuclear targets

The GEANT4 parton string models are capable to predict final states (pro-
duced hadrons which belong to the scalar and vector meson nonets and the
baryon (antibaryon) octet and decuplet) of reactions on nucleon and nuclear
targets with nucleon, pion and kaon projectiles. The allowed bombarding
energy

√
s > 5 GeV is recommended. Two approaches, based on diffractive

excitation or soft scattering with diffractive admixture according to cross-
section, are considered. Hadron-nucleus collisions in the both approaches
(diffractive and parton exchange) are considered as a set of the independent
hadron-nucleon collisions. However, the string excitation procedures in these
approaches are rather different.

28.1.2 MC initialization procedure for nucleus.

The initialization of each nucleus, consisting from A nucleons and Z pro-
tons with coordinates ri and momenta pi, where i = 1, 2, ..., A is performed.
We use the standard initialization Monte Carlo procedure, which is realized
in the most of the high energy nuclear interaction models:

• Nucleon radii ri are selected randomly in the rest of nucleus according
to proton or neutron density ρ(ri). For heavy nuclei with A > 16 [1]
nucleon density is

ρ(ri) =
ρ0

1 + exp [(ri − R)/a]
(28.1)

377



where

ρ0 ≈
3

4πR3
(1 +

a2π2

R2
)−1. (28.2)

Here R = r0A
1/3 fm and r0 = 1.16(1 − 1.16A−2/3) fm and a ≈ 0.545

fm. For light nuclei with A < 17 nucleon density is given by a harmonic
oscillator shell model [2], e. g.

ρ(ri) = (πR2)−3/2 exp (−r2
i /R

2), (28.3)

where R2 = 2/3 < r2 >= 0.8133A2/3 fm2. To take into account
nucleon repulsive core it is assumed that internucleon distance d > 0.8
fm;

• The initial momenta of the nucleons are randomly choosen between
0 and pmax

F , where the maximal momenta of nucleons (in the local
Thomas-Fermi approximation [3]) depends from the proton or neutron
density ρ according to

pmax
F = ~c(3π2ρ)1/3 (28.4)

with ~c = 0.197327 GeV fm;

• To obtain coordinate and momentum components, it is assumed that
nucleons are distributed isotropicaly in configuration and momentum
spaces;

• Then perform shifts of nucleon coordinates r′j = rj − 1/A
∑

i ri and
momenta p′

j = pj − 1/A
∑

i pi of nucleon momenta. The nucleus must
be centered in configuration space around 0, i. e.

∑

i ri = 0 and the
nucleus must be at rest, i. e.

∑

i pi = 0;

• We compute energy per nucleon e = E/A = mN + B(A,Z)/A, where
mN is nucleon mass and the nucleus binding energy B(A,Z) is given
by the Bethe-Weizsäcker formula[4]:

B(A,Z) =
= −0.01587A+ 0.01834A2/3 + 0.09286(Z − A

2
)2 + 0.00071Z2/A1/3,

(28.5)
and find the effective mass of each nucleon meff

i =
√

(E/A)2 − p2′
i .
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28.1.3 Random choice of the impact parameter.

The impact parameter 0 ≤ b ≤ Rt is randomly selected according to the
probability:

P (b)db = bdb, (28.6)

where Rt is the target radius, respectively. In the case of nuclear projectile
or target the nuclear radius is determined from condition:

ρ(R)

ρ(0)
= 0.01. (28.7)

28.2 Sample of collision participants in nu-

clear collisions.

28.2.1 MC procedure to define collision participants.

The inelastic hadron–nucleus interactions at ultra–relativistic energies are
considered as independent hadron–nucleon collisions. It was shown long time
ago [5] for the hadron–nucleus collision that such a picture can be obtained
starting from the Regge–Gribov approach [6], when one assumes that the
hadron-nucleus elastic scattering amplitude is a result of reggeon exchanges
between the initial hadron and nucleons from target–nucleus. This result
leads to simple and efficient MC procedure [7] to define the interaction cross
sections and the number of the nucleons participating in the inelastic hadron–
nucleus collision:

• We should randomly distribute B nucleons from the target-nucleus on
the impact parameter plane according to the weight function T ([~bBj ]).
This function represents probability density to find sets of the nucleon
impact parameters [~bBj ], where j = 1, 2, ..., B.

• For each pair of projectile hadron i and target nucleon j with choosen
impact parameters ~bi and ~bBj we should check whether they interact

inelastically or not using the probability pij(~bi − ~bBj , s), where sij =
(pi + pj)

2 is the squared total c.m. energy of the given pair with the
4–momenta pi and pj, respectively.

In the Regge–Gribov approach[6] the probability for an inelastic collision
of pair of i and j as a function at the squared impact parameter difference
b2ij = (~bi −~bBj )2 and s is given by

pij(~bi −~bBj , s) = c−1[1 − exp {−2u(b2ij , s)}] =

∞
∑

n=1

p
(n)
ij (~bi −~bBj , s), (28.8)
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where

p
(n)
ij (~bi −~bBj , s) = c−1 exp {−2u(b2ij, s)}

[2u(b2ij, s)]
n

n!
. (28.9)

is the probability to find the n cut Pomerons or the probability for 2n strings
produced in an inelastic hadron-nucleon collision. These probabilities are de-
fined in terms of the (eikonal) amplitude of hadron–nucleon elastic scattering
with Pomeron exchange:

u(b2ij , s) =
z(s)

2
exp(−b2ij/4λ(s)). (28.10)

The quantities z(s) and λ(s) are expressed through the parameters of the
Pomeron trajectory, α

′
P = 0.25 GeV −2 and αP (0) = 1.0808, and the param-

eters of the Pomeron-hadron vertex RP and γP :

z(s) =
2cγP

λ(s)
(s/s0)

αP (0)−1 (28.11)

λ(s) = R2
P + α

′
P ln(s/s0), (28.12)

respectively, where s0 is a dimensional parameter.
In Eqs. (28.8,28.9) the so–called shower enhancement coefficient c is intro-

duced to determine the contribution of diffractive dissociation[6]. Thus, the
probability for diffractive dissociation of a pair of nucleons can be computed
as

pd
ij(
~bi −~bBj , s) =

c− 1

c
[ptot

ij (~bi −~bBj , s) − pij(~bi −~bBj , s)], (28.13)

where
ptot

ij (~bi −~bBj , s) = (2/c)[1 − exp{−u(b2ij , s)}]. (28.14)

The Pomeron parameters are found from a global fit of the total, elas-
tic, differential elastic and diffractive cross sections of the hadron–nucleon
interaction at different energies.

For the nucleon-nucleon, pion-nucleon and kaon-nucleon collisions the
Pomeron vertex parameters and shower enhancement coefficients are found:
R2N

P = 3.56 GeV −2, γN
P = 3.96 GeV −2, sN

0 = 3.0 GeV 2, cN = 1.4 and
R2π

P = 2.36 GeV −2, γπ
P = 2.17 GeV −2, and R2K

P = 1.96 GeV −2, γK
P = 1.92

GeV −2, sK
0 = 2.3 GeV 2, cπ = 1.8.

28.2.2 Separation of hadron diffraction excitation.

For each pair of target hadron i and projectile nucleon j with choosen im-
pact parameters~bi and~bBj we should check whether they interact inelastically
or not using the probability

pin
ij (~bi −~bBj , s) = pij(~bi −~bBj , s) + pd

ij(
~bAi −~bBj , s). (28.15)
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If interaction will be realized, then we have to consider it to be diffractive or
nondiffractive with probabilities

pd
ij(
~bi −~bBj , s)

pin
ij (~bAi −~bBj , s)

(28.16)

and
pij(~bi −~bBj , s)
pin

ij (~bAi −~bBj , s)
. (28.17)

28.3 Longitudinal string excitation

28.3.1 Hadron–nucleon inelastic collision

Let us consider collision of two hadrons with their c. m. momenta P1 =
{E+

1 , m
2
1/E

+
1 , 0} and P2 = {E−

2 , m
2
2/E

−
2 , 0}, where the light-cone variables

E±
1,2 = E1,2±Pz1,2 are defined through hadron energies E1,2 =

√

m2
1,2 + P 2

z1,2,

hadron longitudinal momenta Pz1,2 and hadron masses m1,2, respectively.
Two hadrons collide by two partons with momenta p1 = {x+E+

1 , 0, 0} and
p2 = {0, x−E−

2 , 0}, respectively.

28.3.2 The diffractive string excitation

In the diffractive string excitation (the Fritiof approach [9]) only momentum
can be transferred:

P ′
1 = P1 + q

P ′
2 = P2 − q,

(28.18)

where
q = {−q2

t /(x
−E−

2 ), q2
t /(x

+E+
1 ),qt} (28.19)

is parton momentum transferred and qt is its transverse component. We use
the Fritiof approach to simulate the diffractive excitation of particles.

28.3.3 The string excitation by parton exchange

For this case the parton exchange (rearrangement) and the momentum
exchange are allowed [10],[11],[7]:

P ′
1 = P1 − p1 + p2 + q

P ′
2 = P2 + p1 − p2 − q,

(28.20)

where q = {0, 0,qt} is parton momentum transferred, i. e. only its transverse
components qt = 0 is taken into account.
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28.3.4 Transverse momentum sampling

The transverse component of the parton momentum transferred is gener-
ated according to probability

P (qt)dqt =

√

a

π
exp (−aq2

t )dqt, (28.21)

where parameter a = 0.6 GeV−2.

28.3.5 Sampling x-plus and x-minus

Light cone parton quantities x+ and x− are generated independently and
according to distribution:

u(x) ∼ xα(1 − x)β , (28.22)

where x = x+ or x = x−. Parameters α = −1 and β = 0 are chosen for
the FRITIOF approach [9]. In the case of the QGSM approach [7] α = −0.5
and β = 1.5 or β = 2.5. Masses of the excited strings should satisfy the
kinematical constraints:

P ′+
1 P ′−

1 ≥ m2
h1 + q2

t (28.23)

and
P ′+

2 P ′−
2 ≥ m2

h2 + q2
t , (28.24)

where hadronic masses mh1 andmh2 (model parameters) are defined by string
quark contents. Thus, the random selection of the values x+ and x− is limited
by above constraints.

28.3.6 The diffractive string excitation

In the diffractive string excitation (the FRITIOF approach [9]) for each
inelastic hadron–nucleon collision we have to select randomly the transverse
momentum transferred qt (in accordance with the probability given by Eq.
(28.21)) and select randomly the values of x± (in accordance with distribution
defined by Eq. (28.22)). Then we have to calculate the parton momentum
transferred q using Eq. (28.19) and update scattered hadron and nucleon
or scatterred nucleon and nucleon momenta using Eq. (28.20). For each
collision we have to check the constraints (28.23) and (28.24), which can be
written more explicitly:

[E+
1 − q2

t

x−E−
2

][
m2

1

E+
1

+
q2
t

x+E+
1

] ≥ m2
h1 + q2

t (28.25)
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and

[E−
2 +

q2
t

x−E−
2

][
m2

2

E−
2

− q2
t

x+E+
1

] ≥ m2
h1 + q2

t . (28.26)

28.3.7 The string excitation by parton rearrangement

In this approach [7] strings (as result of parton rearrangement) should
be spanned not only between valence quarks of colliding hadrons, but also
between valence and sea quarks and between sea quarks. The each par-
ticipant hadron or nucleon should be splitted into set of partons: valence
quark and antiquark for meson or valence quark (antiquark) and diquark
(antidiquark) for baryon (antibaryon) and additionaly the (n−1) sea quark-
antiquark pairs (their flavours are selected according to probability ratios
u : d : s = 1 : 1 : 0.35), if hadron or nucleon is participating in the n inelastic
collisions. Thus for each participant hadron or nucleon we have to generate
a set of light cone variables x2n, where x2n = x+

2n or x2n = x−2n according to
distribution:

fh(x1, x2, ..., x2n) = f0

2n
∏

i=1

uh
qi
(xi)δ(1 −

2n
∑

i=1

xi), (28.27)

where f0 is the normalization constant. Here, the quark structure functions
uh

qi
(xi) for valence quark (antiquark) qv, sea quark and antiquark qs and

valence diquark (antidiquark) qq are:

uh
qv(xv) = xαv

v , uh
qs(xs) = xαs

s , u
h
qq(xqq) = xβqq

qq , (28.28)

where αv = −0.5 and αs = −0.5 [10] for the non-strange quarks (antiquarks)
and αv = 0 and αs = 0 for strange quarks (antiquarks), βuu = 1.5 and
βud = 2.5 for proton (antiproton) and βdd = 1.5 and βud = 2.5 for neutron
(antineutron). Usualy xi are selected between xmin

i ≤ xi ≤ 1, where model
parameter xmin is a function of initial energy, to prevent from production
of strings with low masses (less than hadron masses), when whole selection
procedure should be repeated. Then the transverse momenta of partons
qit are generated according to the Gaussian probability Eq. (28.21) with
a = 1/4Λ(s) and under the constraint:

∑2n
i=1 qit = 0. The partons are

considered as the off-shell partons, i. e. m2
i 6= 0.
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28.4 Longitudinal string decay.

28.4.1 Hadron production by string fragmentation.

A string is stretched between flying away constituents: quark and anti-
quark or quark and diquark or diquark and antidiquark or antiquark and
antidiquark. From knowledge of the constituents longitudinal p3i = pzi and
transversal p1i = pxi, p2i = pyi momenta as well as their energies p0i = Ei,
where i = 1, 2, we can calculate string mass squared:

M2
S = pµpµ = p2

0 − p2
1 − p2

2 − p2
3, (28.29)

where pµ = pµ1 + pµ2 is the string four momentum and µ = 0, 1, 2, 3.
The fragmentation of a string follows an iterative scheme:

string ⇒ hadron+ new string, (28.30)

i. e. a quark-antiquark (or diquark-antidiquark) pair is created and placed
between leading quark-antiquark (or diquark-quark or diquark-antidiquark
or antiquark-antidiquark) pair.

The values of the strangeness suppression and diquark suppression factors
are

u : d : s : qq = 1 : 1 : 0.35 : 0.1. (28.31)

A hadron is formed randomly on one of the end-points of the string. The
quark content of the hadrons determines its species and charge. In the chosen
fragmentation scheme we can produce not only the groundstates of baryons
and mesons, but also their lowest excited states. If for baryons the quark-
content does not determine whether the state belongs to the lowest octet
or to the lowest decuplet, then octet or decuplet are choosen with equal
probabilities. In the case of mesons the multiplet must also be determined
before a type of hadron can be assigned. The probability of choosing a certain
multiplet depends on the spin of the multiplet.

The zero transverse momentum of created quark-antiquark (or diquark-
antidiquark) pair is defined by the sum of an equal and opposite directed
transverse momenta of quark and antiquark.

The transverse momentum of created quark is randomly sampled accord-
ing to probability (28.21) with the parameter a = 0.25 GeV−2. Then a
hadron transverse momentum pt is determined by the sum of the transverse
momenta of its constituents.

The fragmentation function fh(z, pt) represents the probability distribu-
tion for hadrons with the transverse momenta pt to aquire the light cone
momentum fraction z = z± = (Eh ± ph

z/(E
q ± pq

z), where Eh and Eq
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are the hadron and fragmented quark energies, respectively and ph
z and pq

z

are hadron and fragmented quark longitudinal momenta, respectively, and
z±min ≤ z± ≤ z±max, from the fragmenting string. The values of z±min,max are
determined by hadron mh and constituent transverse masses and the avail-
able string mass. One of the most common fragmentation function is used
in the LUND model [12]:

fh(z, pt) ∼
1

z
(1 − z)a exp [−b(m

2
h + p2

t )

z
]. (28.32)

One can use this fragmentation function for the decay of the excited string.
One can use also the fragmentation functions are derived in [13]:

fh
q (z, pt) = [1 + αh

q (< pt >)](1 − z)αhq (<pt>). (28.33)

The advantage of these functions as compared to the LUND fragmentation
function is that they have correct three–reggeon behaviour at z → 1 [13].

28.4.2 The hadron formation time and coordinate.

To calculate produced hadron formation times and longitudinal coordi-
nates we consider the (1 + 1)-string with mass MS and string tension κ,
which decays into hadrons at string rest frame. The i-th produced hadron
has energy Ei and its longitudinal momentum pzi, respectively. Introduc-
ing light cone variables p±i = Ei ± piz and numbering string breaking points
consecutively from right to left we obtain p+

0 = MS, p+
i = κ(z+

i−1 − z+
i ) and

p−i = κx−i .
We can identify the hadron formation point coordinate and time as the

point in space-time, where the quark lines of the quark-antiquark pair forming
the hadron meet for the first time (the so-called ’yo-yo’ formation point [12]):

ti =
1

2κ
[MS − 2

i−1
∑

j=1

pzj + Ei − pzi] (28.34)

and coordinate

zi =
1

2κ
[MS − 2

i−1
∑

j=1

Ej + pzi −Ei]. (28.35)

28.5 Status of this document

05.12.05 corrected units on hbarc in section 1 - D.H. Wright
00.00.00 created by ??
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Chapter 29

Fritiof (FTF) Model

The Fritiof model, or FTF for short, is used in Geant4 for simulation of
the following interactions: hadron-nucleus at Plab > 3–4 GeV/c, nucleus-
nucleus at Plab > 2–3 GeV/c/nucleon, antibaryon-nucleus at all energies,
and antinucleus-nucleus. Because the model does not include multi-jet pro-
duction in hadron-nucleon interactions, the upper limit of its validity range
is estimated to be 1000 GeV/c per hadron or nucleon.

The model assumes that one or two unstable objects (quark-gluon strings)
are produced in elementary interactions. If only one object is created, the
process is called diffraction dissociation. It is assumed also that the objects
can interact with other nucleons in hadron-nucleus and nucleus-nucleus col-
lisions, and can produce other objects. The number of produced objects in
these non-diffractive interactions is proportional to the number of participat-
ing nucleons. Thus, multiplicities in the hadron-nucleus and nucleus-nucleus
interactions are larger than those in elementary ones.

The modeling of hadron-nucleon interactions in the FTF model includes
simulations of elastic scattering, binary reactions like NN → N∆, πN →
π∆, single diffractive and non-diffractive events, and annihilation in anti-
baryon-nucleon interactions. It is assumed that the unstable objects created
in hadron-nucleus and nucleus-nucleus collisions can have analogous reac-
tions.

Parameterizations of the CHIPS Geant4 model are used for calculations of
elastic and inelastic hadron-nucleon cross sections. Data-driven parameteri-
zations of the binary reaction cross sections and the diffraction dissociation
cross sections in the elementary interactions are implemented in the FTF
model. It is assumed in the model that the unstable object cross sections are
equal to the cross sections of stable objects having the same quark content.

The LUND string fragmentation model is used for the simulation of un-
stable object decays. The formation time of hadrons is considered also. Pa-
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rameters of the fragmentation model were tuned to experimental data. A
restriction of the available phase space is taken into account in low mass
string fragmentation.

A simplified Glauber model is used for sampling the multiplicity of intra-
nuclear collisions. Gribov inelastic screening is not considered. For medium
and heavy nuclei a Saxon-Woods parameterization of the one-particle nuclear
density is used, while for light nuclei a harmonic oscillator shape is used.
Center-of-mass correlations and short range nucleon-nucleon correlations are
taken into account.

The reggeon theory inspired model (RTIM) of nuclear destruction is ap-
plied for a description of secondary particle intra-nuclear cascading. A new
algorithm to simulate ”Fermi motion” in nuclear reactions is used.

Excitation energies of residual nuclei are estimated in the wounded nu-
cleon approximation. This allows for a direct coupling of the FTF model to
the Precompound model of Geant4 and hence with the GEM nuclear frag-
mentation model. The determination of the particle formation time allows
one to couple the FTF model with the Binary cascade model of Geant4.

29.1 Main assumptions of the FTF model

The Fritiof model[1, 2] assumes that all hadron-hadron interactions are bi-
nary reactions, h1 + h2 → h′1 + h′2, where h′1 and h′2 are excited states of the
hadrons with discrete or continuous mass spectra (see Fig. 29.1). If one of
the final hadrons is in its ground state (h1 + h2 → h1 + h′2) the reaction is
called ”single diffraction dissociation”, and if neither hadron is in its ground
state it is called a ”non-diffractive” interaction.

Figure 29.1: Non-diffractive and diffractive
interactions considered in the Fritiof model.

The excited hadrons are considered as QCD-strings, and the correspond-
ing LUND-string fragmentation model is applied in order to simulate their
decays.
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The key ingredient of the Fritiof model is the sampling of the string
masses. In general, the set of final state of interactions can be represented
by Fig. 29.2, where samples of possible string masses are shown. There is
a point corresponding to elastic scattering, a group of points which repre-
sents final states of binary hadron-hadron interactions, lines corresponding
to the diffractive interactions, and various intermediate regions. The region
populated with the red points is responsible for the non-diffractive interac-
tions. In the model, the mass sampling threshold is set equal to the ground
state hadron masses, but in principle the threshold can be lower than these
masses. The string masses are sampled in the triangular region restricted by
the diagonal line corresponding to the kinematical limit M1 + M2 = Ecms

where M1 and M2 are the masses of the h′1 and h′2 hadrons, and also of the
threshold lines. If a point is below the string mass threshold, it is shifted to
the nearest diffraction line.

Figure 29.2: Diagram of the final states of hadron-hadron interactions.

Unlike the original Fritiof model, the final state diagram of the current
model is complicated, which leads to a mass sampling algorithm that is not
simple. This will be considered below. The original model had no points
corresponding to elastic scattering or to the binary final states. As it was
known at the time, the mass of an object produced by diffraction dissociation,
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Mx, for example from the reaction p+p→ p+X, is distributed as dMx/Mx ∝
dM2

x/M
2
x , so it was natural to assume that the object mass distributions in

all inelastic interactions obeyed the same law. This can be re-written using
the light-cone momentum variables, P+ or P−,

P+ = E + pz, P− = E − pz,

where E is an energy of a particle, and pz is its longitudinal momentum along
the collision axis. At large energy and positive pz, P

− ≃ (M2 + P 2
T )/2pz.

At negative pz, P
+ ≃ (M2 + P 2

T )/2|pz|. Usually, the transferred transverse
momentum, PT , is small and can be neglected. Thus, it was assumed that
P− and P+ of a projectile, or target associated hadron, respectively, are
distributed as

dP−/P−, dP+/P+.

A gaussian distribution was used to sample PT .
In the case of hadron-nucleus or nucleus-nucleus interactions it was as-

sumed that the created objects can interact further with other nuclear nu-
cleons and create new objects. Assuming equal masses of the objects, the
multiplicity of particles produced in these interactions will be proportional
to the number of participating nuclear nucleons, or to the multiplicity of
intra-nuclear collisions. Due to this, the multiplicity of particles produced in
hadron-nucleus or nucleus-nucleus interactions is larger than that in hadron-
hadron ones. The probabilities of multiple intra-nuclear collisions were sam-
pled with the help of a simplified Glauber model. Cascading of secondary
particles was not considered.

Because the Fermi motion of nuclear nucleons was simulated in a simple
manner, the original Fritiof model could not work at Plab < 10–20 GeV/c.

It was assumed in the model that the created objects are quark-gluon
strings with constituent quarks at their ends originating from the primary
colliding hadrons. Thus, the LUND-string fragmentation model was applied
for a simulation of the object decays. It was assumed also that the strings
with sufficiently large masses have ”kinks” – additional radiated gluons. This
was very important for a correct reproduction of particle multiplicities in the
interactions.

All of the above assumptions were reconsidered in the implementation
of the Geant4 Fritiof model, and new features were added. These will be
presented below.
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29.2 General properties of hadron-nucleon in-

teractions

Before going into details of the FTF model implementation it would be better
to consider briefly the general properties of hadron-nucleon interactions in
order to understand what needs to be simulated. These properties include
total and elastic cross sections, and cross sections of various other reactions.
There is so much data on inclusive spectra that not all of it can be addressed
in this work. It is hoped that the remaining data will be the subject of
a future paper. Inclusive data present kinematical properties of produced
particles. Their description requires additional methods and parameters,
which will be considered later.

29.2.1 π−p-interactions

Figure 29.3: General properties of π−p-interactions. Points are experi-
mental data: data on total and elastic cross sections from PDG data-base
[3], other data from [4].

Total, elastic and reaction cross sections of π−p-interactions are presented
in Fig. 29.3. As seen, there are peaks in the total cross section connected with
∆-isobar production (∆(1232), ∆(1600), ∆(1700) and so on) in the s-channel,
π− +p→ ∆0. The main channel of a ∆0-isobar decay is ∆0 → π−+p. These
resonances are reflected in the elastic cross section. The other important de-
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cay channel is ∆0 → π0 + n, which is the main inelastic reaction channel at
Plab < 700 MeV/c. At higher energy two-meson production channels start to
dominate, and at Plab > 3 GeV/c there is practically no structure in the cross
sections. Cross sections of final states with defined charged particle multi-
plicity, so-called prong cross sections according to the old terminology, are
presented in the last figure. As seen, real multi-particle production processes
(n ≥ 4) dominate at Plab > 5–7 GeV/c.

In the constituent quark model of hadrons, the creation of s-channel ∆-
isobars is explained by quark–anti-quark annihilation (see Fig. 29.4a). The
production of two mesons may result from quark exchange (see Fig. 29.4b,
29.4c). A quark–di-quark (q–qq) system created in the process can be in
a resonance state (29.4b), or in a state with a continuous mass spectrum
(29.4c). In the latter case, multi-meson production is possible. Amplitudes
of these two channels are connected by crossing symmetry to annihilation
in the t-channel, and with non-vacuum exchanges in the elastic scattering
according to the reggeon phenomenology. According to that phenomenology,
pomeron exchange must dominate in elastic scattering at high energies. In a
simple approach, this corresponds to two-gluon exchange between colliding
hadrons. It reflects also one or many non-perturbative gluon exchanges in the
inelastic reaction. Due to these exchanges, a state with subdivided colors is
created (see Fig. 29.4d). The state can decay into two colorless objects. The
quark content of the objects coincides with the quark content of the primary
hadrons, according to the FTF model, or it is a mixture of the primary
hadron’s quarks, according to the Quark-Gluon-String model (QGSM).

Figure 29.4: Quark flow diagrams of πN -interactions.

The original Fritiof model contains only the pomeron exchange process
shown in Fig. 29.4d. It would be useful to extend the model by adding the
exchange processes shown in Figs. 29.4b and 29.4c, and the annihilation pro-
cess of Fig. 29.4a . This could probably be done by introducing a restricted
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set of mesonic and baryonic resonances and a corresponding set of parame-
ters. This procedure was employed in the binary cascade model of Geant4
(BIC) [5] and in the Ultra-Relativistic-Quantum-Molecular-Dynamic model
(UrQMD) [6]. However, it is complicated to use this solution for a simulation
of hadron-nucleus and nucleus-nucleus interactions. The problem is that one
has to consider resonance propagation in the nuclear medium and take into
account their possible decays which enormously increases computing time.
Thus, in the current version of the FTF model only quark exchange processes
have been added to account for meson and baryon interactions with nucleons,
without considering resonance propagation and decay. This is a reasonable
hypothesis at sufficiently high energies.

29.2.2 π+p-interactions

Figure 29.5: General properties of π+p-interactions. Points are experi-
mental data: data on total and elastic cross sections from PDG data-base
[3], other data from [4].

Total, elastic and reaction cross sections of π+p-interactions are presented
in Fig. 29.5. As seen, there are fewer peaks in the total cross section than in
π−p-collisions. The creation of ∆++-isobars in the s-channel (π++p→ ∆++)
is mainly seen in the elastic cross section because the main channel of ∆++-
isobar decay is ∆++ → π+ + p. This process is due to quark–anti-quark
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annihilation. At Plab > 400 MeV/c two-meson production channels appear.
They can be connected with quark exchange and with the formation of ∆++

and ∆+ isobars at the proton site. The corresponding cross sections of the
reactions – π++p→ π0+∆++ → π0+π++p, π++p→ π++∆+ → π++π0+p,
π+ + p → π+ + ∆+ → π+ + π+ + n have structures at Plab ≃ 1.5 and 2.8
GeV/c. At higher energies there is no structure. The cross sections of other
reactions are rather smooth.

29.2.3 pp-interactions

Figure 29.6: General properties of pp-interactions. Points are experimen-
tal data: data on total and elastic cross sections from PDG data-base
[3], other data from [7]

Total, elastic and reaction cross sections of pp-interactions are presented
in Fig. 29.6. The total cross section is seen to decrease with energy below
the meson production threshold (Plab ≤ 800 MeV/c). Above the threshold
the cross section starts to increase and becomes nearly constant. The main
reaction channel below 6–8 GeV/c is p + p → p + n + π+. Because there
cannot be quark–anti-quark annihilation in the interaction, the reaction must
be connected to quark exchange. Intermediate states can be p+ p→ p+∆+

and p + p → n + ∆++. In the first case, quarks of the same flavor in the
projectile and the target are exchanged. In the second case quarks with
different flavors take part in the exchange. Because the cross section of the
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p+p→ p+n+π+ reaction is larger than the that of p+p→ p+p+π0, one has
to assume that the exchange of quarks with the same flavors is suppressed.

All the reactions shown can also be caused by diffraction dissociation.
Although there can be a yield of the p+ p→ ∆0 + ∆++ reaction in the cross
section of the channel p + p → (p + π−) + (p + π+) at Plab ∼ 2–3 GeV/c.
Because there are no defined structures in the cross sections, one can assume
that diffraction plays an essential role in the interactions.

Summing up the consideration of the interactions, one can conclude that
the probability of quark exchanges can depend on quark flavors, and that
pp-collisions could be a source of information about diffraction.

29.2.4 K+p- and K−p-interactions

For completeness, the properties ofK+p- andK−p-interactions are presented.
Total and elastic cross sections are shown in Fig. 29.7. As the s-anti-quark
in the K+-mesons cannot annihilate in the K+p-interactions, the structure of
the corresponding cross sections is rather simple, and is very like the structure
of pp cross sections. The u-anti-quark in the K−-mesons can annihilate, and
the structure of the cross sections is more complicated. Due to these features,
inelastic reactions are very different even though all of them can be connected
with various quark flow diagrams like that shown in Fig. 29.4

Figure 29.7: Total and elastic cross sections of Kp-interactions.
Points are experimental data from PDG data-base [3].

The reactions K−+p→ Σ−+π+ and K−+p→ Σ0 +π0 can be explained
by the annihilation of the u-anti-quark of the K− and the formation of s-
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channel resonances. The other reactions – K− +p→ Σ+ +π− and K−+p→
Λ + π0, are connected with quark exchange. As seen, the energy dependence
of the cross sections of the two types of processes are different. The K−+p→
n + K0 reaction must be caused by annihilation, but the dependence of its
cross section on energy is closer to that of the quark exchange processes.
The cross section of the reaction has a resonance structure only at Plab < 2
GeV/c. Above that energy there is no structure. Because the cross section
of the reaction is sufficiently small at high energies, one can omit its correct
description.

Figure 29.8: Reaction cross sections of Kp-interactions. Points are ex-
perimental data [8].

K− + p→ n+K− + π+ and K− + p→ p+K0 + π− reactions are mainly
caused by the diffraction dissociation of a projectile or a target hadron. The
energy dependence of their cross sections are different from those of annihi-
lation and quark exchange.

The same regularities can be seen in K+p reactions. The energy depen-
dence of the cross sections of the K++p→ p+K0+π+, K++p→ p+K++π0

and K++p→ n+K++π+ reactions are quite different from those of K−+p.
In summary, there are three types of energy dependence in the reaction

cross sections. The rapidly decreasing one is due to annihilation. The cross
sections of the quark exchange processes decrease more slowly. Finally, the
diffraction cross sections grow with energy and reach near-constant values.
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29.2.5 Proton–anti-proton interactions

Proton–anti-proton interactions provide the beautiful possibility of studying
annihilation processes in detail. The general properties of the interactions
are presented in Fig. 29.9. Almost no structure is seen in the cross sections
and their energy dependence is very different from the previously described
reactions.

Figure 29.9: General properties of p̄p-interactions. Points are experimen-
tal data: data on total and elastic cross sections from PDG data-base
[3], other data from [7].

Cross sections of the reactions – p̄+ p→ π+ +π− and p̄+ p→ K+ +K−,
decrease faster than other cross sections as a functions of energy. p̄ + p →
π++π−+π0 and p̄+p→ 2π++2π− cross sections decrease less rapidly, nearly
in the same manner as cross sections of the reactions – p̄ + p → n + n̄ and
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p̄+ p→ Λ + Λ̄. The cross sections of the reaction – p̄+ p→ 2π+ + 2π− + π0,
is a slowly decreasing function. The cross section of the process – p̄ + p →
3π+ + 3π− + π0 varies only a little over the studied energy range. Cross
sections of other reactions (p̄+ p→ p+ π0 + p̄, p̄+ p→ p+ π+ + π− + p̄ and
so on) show behaviour typical of diffraction cross sections.

The main channel of p̄p interactions at Plab < 4 GeV/c is p̄ + p →
2π+ + 2π− + π0. At higher energies, there is a mixture of various channels.
Such variety in the processes is indicative of complicated quark interactions.
Possible quark flow diagrams are shown in Fig. 29.10.

Figure 29.10: Quark flow diagrams of p̄p-interactions.

As usual, quarks and anti-quarks are shown by solid lines. Dashed lines
present so-called string junctions. It is assumed that the gluon field in
baryons has a non-trivial topology. This heterogeneity is called a ”string
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junction”. Quark-gluon strings produced in the reaction are shown by wavy
lines.

The diagram of 29.10a represents a process with a string junction anni-
hilation and the creation of three strings. Diagram 29.10b describes quark-
antiquark annihilation and string creation between the di-quark and anti-di-
quark. Quark-anti-quark and string junction annihilation is shown in Fig.
29.10c. Finally, one string is created in the process of 29.10e. Hadrons ap-
pear at the fragmentation of the strings in the same way that they appear
in e+e−-annihilation. One can assume that excited strings with complicated
gluonic field configurations are created in processes 29.10d and 29.10f. If the
collision energy is sufficiently small glueballs can be formed in the process
29.10f. Mesons with constituent gluons or with hidden baryon number can
be created in process 29.10d. Of course the standard FTF processes shown
in the bottom of the figure are also allowed.

In the simplest approach it is assumed that the energy dependence of the
cross sections of these processes vary inversely with a power of s as depicted
in Fig. 29.10 . Here s is CMS energy squared. This is dictated by the
reggeon phenomenology. Calculating the cross sections of binary reactions is
a rather complicated procedure (see [9]) because there can be interactions in
the initial and final states. These interactions reflect also on cross sections
of other reactions [10].

29.3 Hadron-nucleon process cross section

29.3.1 Total, elastic and inelastic hadron-nucleon cross
sections

Parameterizations of the cross sections implemented in the CHIPS model of
Geant4 (Authors: M.V. Kossov and P.V. Degtyarenko) are used in the FTF
model. The general form of the parameterization is

σ = σLE + σAs,

where σLE is a low energy parameterization depending on the types of col-
liding particles, and σAs is the asymptotic part of cross sections. The COM-
PLETE Collaboration proposed a hypothesis [11] that σAs of total cross
sections at very high energies does not depend on the types of colliding par-
ticles:

σtot
As = Zh1h2 +B (log(s/s0))

2 ,

399



B = 0.3152, s0 = 34.0 [(GeV/c)2] (COMPLETE, 2002) (29.1)

B = 0.308 , s0 = 28.9 [(GeV/c)2] (PDG, 2006) (29.2)

B = 0.304 , s0 = 33.1 [(GeV/c)2] (M.Ishida, K.Igi, 2009)(29.3)

while the pre-asymptotic part does depend on colliding particles (h1, h2).
The CHIPS model σAs for total and elastic cross sections has the same

form:

σAs =
{

A [ln(Plab) − B]2 + C +D/P 0.5
lab + E/Plab + F/P 2

lab

}

/

(

1 +G/P 0.5
lab +H/P 3

lab + I/P 4
lab

)

[mb],

Plab in [GeV/c]

where A, B, C and so on are parameters given in Tabl. 29.1, 29.2.

Table 29.1: CHIPS model parameters for total cross sections
h1 h2 A B C D E F G H I
π−p 0.3 3.5 22.3 12.0 0 0 0 0 0.4
π+p 0.3 3.5 22.3 5.0 0 0 0 0 1.0
pp 0.3 3.5 38.2 0 0 0 0 0 0.54
np 0.3 3.5 38.2 0 0 52.7 0 0 2.72
K+p 0.3 3.5 19.5 0 0 0 0.46 0 1.6
K−p 0.3 3.5 19.5 0 0 0 -0.21 0 0.52
p̄p 0.3 3.5 38.2 0 0 0 0 0 0

Table 29.2: CHIPS model parameters for elastic cross sections
h1 h2 A B C D E F G H I
π−p 0.0557 3.5 2.4 6.0 0 0 0 0 3.0
π+p 0.0557 3.5 2.4 7.0 0 0 0 0 0.7
pp 0.0557 3.5 6.72 0 30.0 0 0 0.49 0.
np 0.0557 3.5 6.72 0 32.6 0 0 0 1.0
K+p 0.0557 3.5 2.23 0 0 0 -0.7 0 0.1
K−p 0.0557 3.5 2.23 0 0 0 -0.7 0 0.075

The low energy parts of the cross sections are very different for various
projectiles, and they are not presented here. These can be found in the
corresponding classes of Geant4.

It is obvious that σin = σtot − σel.
A comparison of the parameterizations with experimental data was pre-

sented in the previous figures.
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29.3.2 Cross sections of quark exchange processes

Cross sections of quark exchange processes are parameterized as:

σq.e. = σin A e−B ylab,

where ylab is a projectile rapidity in a target rest frame. A and B are param-
eters given in Tabl. 29.3

Table 29.3: Parameters of quark exchange cross sections
h1 h2 A B
pp/pn 1.85 0.7
πp/πn 240 2
Kp/Kn 40 2.25

The parameters were determined from a description of reaction channel
cross sections.

29.3.3 Cross sections of anti-proton processes

The annihilation cross section is given as:

σann = σa + B Xb + C Xc + D Xd,

where Xi are yields of the diagrams of Fig. 29.10. All cross sections are given
in [mb].

σa = 25
√
s/λ1/2(s,m2

p, m
2
N ),

λ(s,m2
p, m

2
N) = s2 +m4

p +m4
N − 2sm2

p − 2sm2
N − 2m2

pm
2
N ,

Xb = 3.13 + 140 (sth − s)2.5, s < sth, sth = (mp +mN + 2mπ + δ)2

Xb = 6.8/
√
s, s > sth,

Xc = 2

√
s

λ1/2(s,m2
p, m

2
N)

(mp +mN )2

s
,

Xd = 23.3/s.

The coefficients B, C and D are pure combinatorial coefficients calcu-
lated on the assumption that the same conditions apply to all quarks and
anti-quarks. For example, in p̄p interactions there are five possibilities to
annihilate a quark and an anti-quark, and six possibilities to annihilate two
quarks and two anti-quarks. Thus, B = C = 5 and D = 6.
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Table 29.4: Coefficients B, C and D
p̄p p̄n n̄p n̄n Λ̄p Λ̄n Σ̄−p Σ̄−n Σ̄0p Σ̄0n Σ̄+p Σ̄+n

B 5 4 4 5 3 3 2 4 3 3 4 2
C 5 4 4 5 3 3 2 4 3 3 4 2
D 6 4 4 6 3 3 2 2 2 2 2 0

Ξ̄−p Ξ̄−n Ξ̄0p Ξ̄0n Ω̄−p Ω̄−n
B 1 2 2 1 0 0
C 1 2 2 1 0 0
D 0 0 0 0 0 0

Note that final state particles in the process of Fig. 29.10b can coincide
with initial state particles. Thus the true elastic cross section is not given by
the experimental cross section.

At Plab < 40 MeV/c anti-proton-nucleon cross sections are:

σtot = 1512.9, σel = 473.2, σa = 625.1, σb = 9.78, σc = 49.99, σd = 6.61.

All cross sections are given in [mb]. σb = 0 for p̄p-interactions because the
process p̄p→ n̄n is impossible at the energies (Plab < 40 MeV/c).

29.3.4 Cross sections of diffractive and non-diffractive

processes

As mentioned above, three processes are considered in the FTF model at
high energies: projectile diffraction (pd), target diffraction (td) and non-
diffractive interactions (nd). They are parameterized as:

σpd
pp = σtd

pp = 6 + σin1.5

s
, (mb),

σpd
p̄p = σtd

p̄p = 6 + σin1.5

s
, (mb),

σpd
πp = 6.2 − e−

(
√
s−7)2

16 , σtd
πp = 2 + 22/s, (mb),

σpd
Kp = 4.7, σtd

Kp = 1.5, (mb),

For the determination of the cross sections, inclusive spectra of particles
in hadronic interactions were used. In Fig. 29.11 an inclusive spectrum of
protons in the reaction p + p → p + X is shown in comparison with model
predictions.

As seen, all the models have difficulties in describing the data. In the
FTF model this was overcome by tuning the single diffraction dissociation
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Figure 29.11: Left: inclusive spectrum of proton in pp-interactions at
Plab = 24 GeV/c. Points are experimental data [14], lines are model
calculations. Right: single diffraction dissociation cross section in pp-
interactions. Points are data gathered by K. Goulianos and J. Montanha
[15]. Lines are FTF model calculations.

cross section. Tuning was made possible by the fact that the height of the
proton peak at large rapidities depends on this cross section (see left Fig.
29.11).

The 2σpd
pp predicted by the expression (blue solid curve) is shown at the

right of Fig. 29.11 in a comparison with experimental data gathered by K.
Goulianos and J. Montanha [15]. The values are larger than experimental
data. Though taking into account the restriction that the mass of a produced
system, X, cannot be very small or very large (M2/s < 0.05 and M > 1.5
GeV) brings the predictions closer to the data. So, the accounting of the
restriction is very important for a correct reproduction of the data.

A more complicated situation arises with πp- and Kp-interactions. The
set of experimental data on diffraction cross sections is very restricted. Thus,
a refined tuning was used. The FTF processes discussed above give yields
in various regions of particle spectra. The target diffraction dissociation,
π + p → π + X, gives its main yield at large values of xF = 2pz/

√
s for

π-mesons. The projectile diffraction dissociation yield (π + p → X + p)
has a maximum at xF ∼ −1. Thus, using various experimental data and
varying the cross sections of the processes, the points presented in the lower
left corner of Fig. 29.12 were obtained. They were parameterized by the
expressions ???. A correct reproduction of particle spectra in the central
region, xF ∼ 0, was very important for these. As a result, we have a good
description of π-meson spectra in the interactions at various energies.

In Kp-interactions the projectile diffraction cross sections were deter-
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mined by tuning on proton spectra from the reactions K + p → p + X (see
Fig. 29.13). There are no data on leading K-meson spectra in the reac-
tions K + p → K + X. Thus, π−-meson spectra in the central region were
tuned. At a given value of a projectile diffraction cross section, the central
spectrum depends on a target diffraction. This was used to determine the
target diffraction cross sections. The estimated cross sections are shown in
the lower left corner of Fig. 29.13. As a result, a satisfactory description of
meson spectra was obtained.

Figure 29.12: Upper figures: inclusive spectra of protons and π+-mesons
in π+p-interactions. Points are experimental data [16]. Lines are yields
of the FTF processes calculated on the assumption that the probability
of a process is 100 %. Bottom left figure: diffraction dissociation cross
sections obtained by tuning (points), and their description (lines) by the
expressions ... Bottom right figure: Rapidity spectrum of π+-mesons in
π+p-interactions at plab =100 GeV/c. Points are experimental data [17].
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Figure 29.13: Upper figures: inclusive spectra of protons and π−-mesons
in Kp-interactions. Points are experimental data [18]. Lines are FTF
calculations. Bottom left figure: diffraction dissociation cross sections
obtained by tuning (points), and their description (lines) by the expres-
sions ... Bottom right figure: xF spectrum of positive charged particles
in Kp-interactions at plab =250 GeV/c. Points are experimental data
[17], lines are model calculations.

29.4 Simulation of hadron-nucleon

interactions

29.4.1 Simulation of meson-nucleon and

nucleon-nucleon interactions

Colliding hadrons may either be on or off the mass shell when they are bound
in nuclei. When they are off-shell the total mass of the hadrons is checked. If
the sum of the masses is above the CMS energy of the collision, the simulated
event is rejected. If below, the event is accepted. It is assumed that due to
the interaction the hadrons go on-shell, and the CMS energy of the collision
is not changed.

The simulation of an inelastic hadron-nucleon interaction starts with a
choice: should a quark exchange or a diffractive excitation be simulated? The
probability of a quark exchange is given by Wqe = σqe/σ

in. The probability
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of a diffractive excitation is then 1 −Wqe. σqe depends on the energies and
flavors of the colliding hadron (see Eq.???).

If a quark exchange is sampled, the quark contents of the projectile and
target are determined. After that the possibility of a quark exchange is
checked. A meson consists of a quark and an anti-quark. Thus there is
no alternative but to choose a quark. Let it be qM . A baryon has three
quarks, q1, q2 and q3. The quark from the meson can be exchanged, in
principle, with any of the baryon quarks, but the above description of the
experimental data indicates that an exchange of quarks with the same flavor
must be suppressed. So, only the exchange of quarks with different flavors is
allowed. After the exchange (qM ↔ qi), the new contents of the meson and
the baryon are determined. The new meson may be either pseudo-scalar or
pseudo-vector with a 50% probability. The new baryon may be in its ground
state, or in an excited state. The probability of an excited baryon state is
0.56 for πN -interactions, and 0.6 for KN -interactions. Only ∆(1232)’s are
considered as excited states. If all quarks of a baryon have the same flavor,
the ∆(1232) is always created (∆(1232)++ or ∆(1232)−−).

The same procedure is followed for a projectile baryon, but in this case
any quark of the projectile or target may participate in an exchange if they
have different flavors. Only the ground state of the new baryon is considered.

Final state hadrons may undergo additional elastic scattering with prob-
ability Wel = 2.256 e−0.6 ylab, or a diffractive excitation with probability
1 −Wel, where ylab is the rapidity of the projectile in the target rest frame.

The above procedure is sufficient for a description of hadron-nucleon re-
action cross sections at plab < 3 – 5 GeV/c. At higher energies the diffractive
excitation must be simulated.

As mentioned above, there can be a projectile diffraction, or a target
diffraction, or both of them. Probabilities of the corresponding processes at
high energies are: σpd/σin, σtd/σin, and (σin − σpd − σtd)/σin. The processes
are sampled randomly.

Having a sampled a projectile diffraction or a target diffraction, the cor-
responding light-cone momentum (P− or P+) is choosing according to the
distribution: dP−/P− or dP+/P+. Boundaries for a sampling have to be
determined before.

Let us consider kinematics of a projectile diffraction, P +T → P ′+T , for
a definition of these boundaries. It is obvious that a mass of the diffractive
produced system, mP ′ , must satisfy the conditions:

mD ≤ mP ′ ≤ √
s−mT ,

where mD is a minimal mass of the system, s is a CMS energy squared, mT

is a mass of the target. If there is not a transverse momentum transfer, and
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mP ′ reaches the lower boundary then

P−
min =

√

m2
D + p2

z − pz, pz = λ1/2(s,m2
D, m

2
T )/2

√
s.

When mP ′ reaches the upper boundary, the longitudinal momenta of the
particles are zeros. Thus,

P−
max =

√
s−mT .

Having a sampled P−, mP ′ and P+ can be found with a help of the
energy-momentum conservation law written is the CMS system:

{

EP ′ + ET =
√
s

Pz,P ′ + Pz,T = 0

∣

∣

∣

∣

P−
P ′ + P−

T =
√
s

P+
P ′ + P+

T =
√
s

∣

∣

∣

∣

∣

∣

P−
T =

√
s− P−

P ′

P+
T = m2

T/P
−
T

m2
P ′ = P−

P ′ · (
√
s− P+

T )
(29.4)

An accounting of a transferred transverse momentum sampled according
to the distribution:

dW =
1

π < P 2
⊥ >

e−P 2
⊥/<P 2

⊥>d2P⊥, < P 2
⊥ >= 0.3 (GeV/c)2,

leads to a replacement of masses by transverse masses, m⊥ =
√

m2 + P 2
⊥.

Let us determine also light-cone momenta transferred to the projectile
are:

Q+ = P+
T,0 − P+

T , Q− = P−
T,0 − P−

T ,

where P+
T,0 and P−

T,0 are light-cone momenta of the target in the initial state.

In the case of non-diffractive interaction (P+T → P ′+T ′), P−
P ′ is sampled

first of all as it was described above at mT = mT,nd, where mT,nd is a minimal
mass of target originated particle produced in the non-diffractive interaction.
After that, P+

T ′ is independently sampled at mP = mP,nd. The minimal light-
cone momenta, P−

P ′ and P+
T ′, are calculated at mP = mP,nd and mT = mT,nd.

At the last step it is checked that mP ′ ≥ mP,nd and mT ′ ≥ mT,nd. In the
current version of the FTF model the same value is used for minimal masses
in the diffractive and non-diffractive interactions.

Table 29.5: Minimal masses of diffractive produced strings
p/n π K

mD (MeV) 1160 500 600
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29.4.2 Simulation of anti-baryon-nucleon interactions

At the beginning of an annihilation simulation, the cross sections of the
processes (see Fig. 29.10) are calculated (see ???). After that a sampling of
a process takes place.

In the cases of the processes 29.10b and 29.10e quarks for the annihilation
are chosen randomly. In each of the processes only one string is created. Its
mass is equal to a CMS energy of the interaction. After that the string is
fragmented. It is required at the fragmentation, that in the process 29.10b
there must not be a baryon and an anti-baryon in a final state.

At sufficiently high energies the standard FTF processes can be simulated
as it was described above.

In the process 29.10c only 2 strings will be created. If their masses are
given, kinematical properties of the strings can be determined with a help
of the energy-momentum conservation law. The masses must be connected
with quark’s and anti-quark’s momenta.

We believe that in the process all quarks and anti-quarks are in equal
conditions. Thus, transverse momenta of them are sampled independently
according to the gaussian distribution with < P 2

⊥ >= 0.04 (GeV/c)2. To put
a sum of the momenta to zero, a transverse momentum of each particle is
re-defined: ~P⊥i → ~P⊥i − 1

4

∑4
j=1

~P⊥j.
To find longitudinal momenta of quarks let us use light-cone momenta:

total light-cone momenta of projectile originated anti-quarks and target orig-
inated quarks,

P+ = P+
q̄1

+ P+
q̄2
, P− = P−

q1
+ P−

q2
.

Let us introduce also light-cone momentum fractions:

x+
q̄1

= P+
q̄1
/P+, x+

q̄2
= 1 − x+

q̄1

x−q1
= P−

q1
/P−, x−q2

= 1 − x−q1
.

Using these variables, the energy-momentum conservation law in CMS
system is written as:

P+/2 +
α

2 P+
+ P−/2 +

β

2 P− =
√
s, (29.5)

P+/2 − α

2 P+
− P−/2 +

β

2 P− = 0, (29.6)

α =
m2

⊥q̄1

x+
q̄1

+
m2

⊥q̄2

1 − x+
q̄1

,

β =
m2

⊥q1

x−q1

+
m2

⊥q2

1 − x−q1

.
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A solution of the equations at
√
α+

√
β ≤ √

s is:

P+ =
s + α− β + λ1/2(s, α, β)

2
√
s

, (29.7)

P− =
s− α + β + λ1/2(s, α, β)

2
√
s

. (29.8)

If
√
α+

√
β >

√
s, the transverse momenta and x’s are re-sampled until

the inequality will be broken.
Because quarks are in the equal conditions, a distribution on x can have

a form xa (1−x)a. A recommended value of a can be zero or −0.5. We chose
a = −0.5. We assumed also that quark masses are zeros. Probably, other
values of the parameters can be used, but we have not found experimental
data sensitive to the parameters.

At a simulation of the process 29.10a we follow the same line of the
consideration, and introduce light-cone momentum fractions – x+

q̄1, x
+
q̄2, x

+
q̄3

and x−q1
, x−q2

, x−q3
. A distribution on x’s is chosen in the form:

dW ∝ xa
q1
xa

q2
xa

q3
δ(1 − xq1 − xq2 − xq3)dxq1 dxq2 dxq3 , a = −0.5.

It is obvious that in the case

α =
3
∑

i=1

m2
⊥q̄i

x+
q̄i

, β =
3
∑

i=1

m2
⊥qi

x−qi
.

29.5 Flowchart of the FTF model

A simulation of hadron-nucleus or nucleus-nucleus interaction events starts
with an initialization of the model variables: calculations of cross sections,
setting up slopes, masses and so on. The next step is a determination of
intra-nuclear collision multiplicity with a help of Glauber model. If energy
of collisions is sufficiently high, a simulation of secondary particle cascading
within the reggeon theory inspired model (RTIM [19]) is carried out. After
that all involved nuclear nucleons are put on the mass-shell. If the energy is
not high enough these steps are missed. A reason for this will be explained
latter.

The main job is doing in the loop over intra-nuclear collisions. To the
moment a time order of the collisions has determined. For each collision it is
sampled what has to be simulated – elastic scattering, inelastic interaction
or annihilation for projectile anti-baryons. For each branch an adjustment
of a participating nuclear nucleon is performed at the low energy, and the
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corresponding process is simulated. In the case of a sampling of the inelastic
interaction at high energy there is an alternative – to reject the interaction
or to process it.

Figure 29.14: Flowchart of the FTF model

At the end of the loop properties of nuclear residuals (mass number,
charge, excitation energy and 4-momentum) are transferred to a calling pro-
gram. The program initiates the fragmentation of created strings and decays
of excited residuals.

Simulations of elastic scattering, inelastic interactions and annihilation
were considered above. Other steps of the FTF model will be presented
below.
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29.6 Simulation of nuclear interactions

29.6.1 Sampling of intra-nuclear collisions

Classical cascade-type sampling

As known, the intra-nuclear cascade models like that implemented in Geant4
– the Bertini model and the Binary cascade model, work well at projectile
energies below 5 – 10 GeV. The first step in the model is a sampling of
the impact parameter, b. The next step is a sampling of a point where a
projectile will interact with nuclear matter (see Fig. 29.15a).

Figure 29.15: Cascade-type sampling.

The following consideration is used here: a probability that the projectile
reaches a point z going from minus infinity to the point z is

P = e−σtot
R z
−∞ ρA(~b,z′) dz′,

where σtot is the total cross section of the projectile-nucleon interaction, ρA

is is a density of a nucleus considered as a continuous medium.
A probability that the projectile will have an interactions in the range z

– z + dz is equal σtotρA(~b, z) dz. Thus, the total probability is:

P (~b, z) = σtotρA(~b, z) e−σtot
R z
−∞ ρA(~b,z′) dz′ dz,

P (~b) =

∫ +∞

−∞
P (~b, z) dz = 1 − e−σtot

R ∞
−∞ ρA(~b,z′) dz′ .

Having sampled the interaction point, a choice between an elastic scattering
and an inelastic interaction is implemented. In the case of the inelastic inter-
action, a multi-particle production process is simulated. After this, for each
produced particles new interactions points are sampled, and so on. In the
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case of the elastic scattering, the scattering is simulated, and new interactions
points for a recoil nucleon and the projectile are sampled.

The prescription is changed a little bit at a replacing of the continuous
medium by a collection of A nucleons located in the points {~si, zi}, i = 1–A
where {~si} are coordinates of the nucleons in the impact parameter plane.
The projectile can interact with a nearest nuclear nucleon, ~si of which satisfies
a condition: |~b− ~si| ≤

√

σtot/π (see Fig. 29.15b).
In first versions of the cascade model, nucleons and pions were consid-

ered only. When it was recognized that most of inelastic reactions at in-
termediate energies are going through resonance productions, various bary-
onic and mesonic resonances were included, and the algorithm changed (see
Fig. 29.15c). At energy growth more and more heavy resonances were pro-
duced. Thus an understanding of interactions was changed because proper-
ties of resonance-nucleon collisions were not known. Here an interpretation
of Glauber approximation was very useful.

Short review of Glauber approximation

The Glauber approach [20] was proposed before a creation of the intra-nuclear
cascade model in the framework of the potential theory. Its main assumption
is that at sufficiently high energies many partial waves give yields in a particle
elastic scattering amplitude, f(~q). Thus, a summation on angular momenta
can be replaced by an integral:

f(~q) =
iP

2π)

∫

ei~q~b
[

1 − eiχ(~b)
]

d2b,
dσ

dΩ
= |f(~q)|2,

γ(~b) =
1

2πiP

∫

e−i~q~b f(~q) d2q,

where P is a projectile momentum, q is transferred transverse momentum, ~b
is the impact parameter, χ is a phase shift, and γ is the scattering amplitude
in the impact parameter representation.

Due to the additivity of potentials, it was natural to assume that a sum-
mared phase shift for a projectile scattered on A centers located in the points
{~si, zi}, i = 1–A is a sum of corresponding shifts on each center:

χhA =

A
∑

i=1

χ(~b− ~si),

γhA(~b) = 1 −
A
∏

i=1

[

1 − γ(~b− ~si)
]

. (29.9)
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Because positions of nucleons in nuclei are not fixed, the Eq. 29.9 has to
be averaged, and a hadron-nucleus scattering amplitude takes a form:

F hA
0→f =

iP

2π

∫

d2b e−i~q~b

{

1 −
A
∏

i=1

[

1 − γ(~b− ~si)
]

}

Ψ0({rA})Ψ∗
f({rA})

A
∏

i=1

d3ri,

(29.10)
where Ψ0 and Ψf are wave functions of the nucleus in initial and final states,
respectively.

In the case of elastic scattering, Ψ0 = Ψf , we have:

F hA
el =

iP

2π

∫

d2b e−i~q~b

{

1 −
A
∏

i=1

[

1 −
∫

γ(~b− ~si)ρA(~si, z
′)d2sidz

′
]

}

≃

(29.11)

≃ iP

2π

∫

d2b e−i~q~b

{

1 −
[

1 − 1

A

∫

γ(~b− ~s)TA(~s)d2s

]A
}

≃ iP

2π

∫

d2b e−i~q~b
{

1 − e−
R

γ(~b−~s)TA(~s)d2s
}

≃ iP

2π

∫

d2b e−i~q~b
{

1 − e−σtothN (1−iα)TA(~b)/2
}

A lot of assumptions and abbreviations was used at the derivations. First
of all it was assumed that |Ψ0|2 ≃

∏A
i=1 ρ(~si, zi) where ρ is one particle nuclear

density. Because the nucleon coordinates must obey the obvious condition
–
∑A

i=1 ~ri = 0, it would be better to use |Ψ0|2 ≃ δ(
∑A

i=1 ~ri)
∏A

i=1 ρ(~si, zi).
An accounting of this δ-function is called an accounting of center-of-mass
correlation.

The second assumption is that A is sufficiently large, thus (1− x
A
)A
A→∞ =

e−x (optical limit).
A thickness function of the nucleus was introduced:

T (~b) = A

∫ +∞

−∞
ρ(~b, z) dz.

It was assumed also that a range of γ-function is much less than a range
of the nuclear density:

∫

γ(~b−~s)TA(~s)d2s ≃ σtot
hN(1− iα)TA(~b)/2, where σtot

hN

is hadron-nucleon total cross section, and α = Re f(0)/Im f(0) is a ratio of
real and imaginary parts of hadron-nucleon elastic scattering amplitude at
zero momentum transfer.

There were many applications of the Glauber approach for calculations of
elastic scattering cross sections, cross sections of nuclear excitations, coherent
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particle production and so on. We consider only its application to inelastic
reactions.

If energy resolution of a scattered projectile is not high, many nuclear ex-
cited states can give yields in scattering amplitude: F hA =

∑

f F
hA
0→f . Finding

corresponding cross section, it is usually assumed that a set of final state
wave functions satisfy the complitness relation:

∑

f Ψf({~ri})Ψ∗
f({~r′j}) =

∏A
i=1 δ(~ri − ~r′i).
The cross section of the reactions called cross section of elastic and quasi-

elastic scatterings is given as:

σhA
el.+qel. =

∫

d2b
{

1 − 2Re e−σtothN (1−iα)TA(~b)/2 + e−σinhNTA(~b)
}

. (29.12)

Subtracting from it the cross section of the elastic scattering, we have:

σhA
qel. =

∫

d2b
{

e−σinhNTA(~b) − e−σtothNTA(~b)
}

=

∫

d2b e−σtothNTA(~b)
{

eσelhNTA(~b) − 1
}

=

(29.13)

=

∫

d2b e−σtothNTA(~b)
∞
∑

n=1

[σel
hNTA(~b)]n

n!
.

The last expression shows that the quasi-elastic cross section is a sum
of cross sections with various multiplicities of elastic scatterings. It coin-
cides with a prescription of the cascade model if only elastic scatterings of a
projectile are considered.

Cross section of multi-particle production processes in the Glauber ap-
proach has a form:

σhA
mpp = σhA

tot − σhA
el.+qel. =

∫

d2b
{

1 − e−σinhNTA(~b)
}

= (29.14)

=

∫

d2b e−σinhNTA(~b)
∞
∑

n=1

[σin
hNTA(~b)]n

n!
.

It coincides with an analogous cascade expression if a projectile particle
can be distinguished from produced particles. Of course, it cannot be so in
the case of projectile pions.

In the FTF model of Geant4 it is assumed that projectile and target
originated strings are distinguished. Thus, the cascade-type algorithm of the
sampling of the multiplicities and types of interactions in nuclei is used.

A generalization of the Glauber approach for the case of nucleus-nucleus
interactions was proposed by V. Franco [21]. In the theory, a cross section
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of multi-particle production processes is given by the expression:

σAB
mpp =

∫

d2b

{

1 −
A
∏

i=1

B
∏

j=1

[

1 − g(~b+ τj − ~si)
]

}

· (29.15)

·|ΨA
0 ({rA})|2|ΨB

0 ({tB})|2
[

A
∏

i=1

d3ri

][

B
∏

j=1

d3ti

]

,

where g(~b) = γ(~b) + γ∗(~b) − |γ(~b)|2, A and B are mass numbers of colliding
nuclei, {~τj} is a set of impact coordinates of projectile nucleons (~t = (~τ , z)).

Considering g(~b) as a probability that two nucleons separated by the im-

pact parameter ~b will have an inelastic interaction, a simple interpretation of
the Eq. 29.15 can be given. The expression in the curly brackets of Eq. 29.15
is a probability that there will be at least one or more inelastic nucleon-

nucleon interactions. |ΨA
0 ({rA})|2 |ΨB

0 ({tB})|2
[

∏A
i=1 d

3ri

] [

∏B
j=1 d

3ti

]

is

a probability to find nucleons with coordinates {rA} and {tB}. The in-
terpretation allows a simple implementation in a program code which was
done in many papers [22] sometimes with the simplifying assumptions that

g(~b) = θ(|~b| −
√

σin
NN/π). It is so-called Glauber Monte Carlo approach.

Because there is no expression in the Glauber theory that combines elas-
tic and inelastic nucleon-nucleon collisions in nucleus-nucleus interactions,
the cascade-type sampling is used in the FTF model in the case of these
interactions.

Correction of interaction number

The Glauber cross section of multi-particle production processes in a hadron-
nucleus interactions (Eq. 29.14) was obtained in the reggeon phenomenology
[23] applying the asymptotical Abramovski-Gribov-Kancheli cutting rules
[24] to the elastic scattering amplitude (Eq. 29.11). Thus, the summation in
Eq. 29.14 is going from one to infinity. But a large number of intra-nuclear
collisions cannot be reached in interactions with extra-heavy nuclei (like neu-
tron star), or at low energy. To restrict the number of collisions it is needed
to introduce finite energy corrections to the cutting rules. Because there is
no defined prescription for accounting of these corrections, let us undertake
a phenomenological consideration, and start with the cascade model.

As it was said above, a simple cascade model considers only pions and
nucleons. Due to this it cannot work when resonance production is a domi-
nating process in hadronic interactions. But if energy is sufficiently low the
resonances can decay before a next possible collision, and the model can be
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valid. Let p is a momentum of a produced resonance (∆). The average
life time of the resonance in its rest frame is 1/Γ. In the laboratory frame
the time is E∆/Γ m∆. During the time, the resonance will fly a distance
l̄ = v E∆/Γ m∆ = p/Γ m∆. If the distance is less than an average distance
between nucleons in nuclei (d̄ ∼ 2 fm), the model can be applied. From the
condition, we have:

p ≤ d̄ Γm∆ ∼ 1.5 (GeV/c).

Direct ∆-resonance production takes place in πN interactions at low en-
ergies. Thus the model cannot work quite well at momentum of pions above
2 GeV/c. In nucleon-nucleon interactions, due to momentum transfer to a
target nucleon, the boundary can be higher.

Returned back to the FTF model, let us assume that projectile originated
strings have average life time 1/Γ, and an average mass m∗. The strings can
interact at the average with l̄/d̄ = p/Γ m∗/d̄ = p/p0 nucleons. Here p0 is a
new parameters. According to our estimations it is about 3–5 GeV/c. Thus,
we can assume that at given energy there can be a maximum number of
intra-nuclear collisions in the FTF model – νmax = p/p0.

Let us introduce this number in the Glauber expression for the cross
section of multi-particle production processes.

σhA
mpp =

∫

d2b

{

1 −
(

1 − 1

A
σin

hNTA(~b)

)A
}

= (29.16)

=

∫

d2b

{

1 −
[

(

1 − 1

A
σin

hNTA(~b)

)A/νmax
]νmax}

=

=

∫

d2b

νmax
∑

ν=1

νmax!

ν!(νmax − ν)!

[

1 −
(

1 − 1

A
σin

hNTA(~b)

)A/νmax
]ν

·

·
[

(

1 − 1

A
σin

hNTA(~b)

)A/νmax
]νmax−ν

.

As seen, the number of the intra-nuclear collisions is restricted according to
the formula by νmax.

The formula looks rather complicated, but a Monte Carlo algorithm for
the rejection of the interaction number is quite simple.

An algorithm implementing of the idea look like that: at the beginning,
a projectile has a power, Pw, to interact inelastically with νmax nucleons
(Pw = νmax), thus a probability of an interaction with the first nucleon,
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Pw/νmax, is equal to 1. The power decreases after the interaction on 1. Thus,
a probability of an inelastic interaction with the second nucleon is equal to
Pw/νmax, where Pw = νmax − 1. If the second interaction is happened, the
power is decreased one more. In other case, it is left on the same level. This
is applied for each possible interaction.

The same algorithm is applied in the case of nucleus-nucleus interactions,
but each of projectile or target nucleon is ascribed by the power.

29.6.2 Reggeon cascading

As known, the Glauber approximation used in the Fritiof model and in the
other string models does not provide enough amount of intra-nuclear colli-
sions for a correct description of a nuclear destruction. Additional cascading
in nuclei is needed! An usage of a standard cascade for secondary particle
interactions leads too large multiplicity of produced particles. Usually, it is
assumed that an inclusion of a secondary particle’s formation time can help
to solve this problem. Hadrons are not point-like particles. They have de-
fined space sizes. Thus, a production of a hadron cannon be considered as
a process taking place in a point, but rather in a space region. To imple-
ment the idea in Monte Carlo generators, it is assumed that particles are
appeared not in a nominal space-time point of production, but after some
time interval called the formation time, and at some distance called the for-
mation length. Because these time and length depend on a reference frame,
it is assumed that for them standard relativistic formulae can be applied:
tF = τ0E/m, lF = τ0p/m, where E, p and m are energy, momentum and
mass of the particle in a final state. τ0 is a parameter. Now the problem
is – How can one determine the ”nominal” point of the production? We
do not know a regular solution of the problem. Additional to this, reggeon
theory experts criticized for long time the concept of the formation time and
the ”standard” model of particle cascading in nuclei – the approaches do
not consider a space-time structure of strong interactions. It was assumed
also that the cascading could be correctly treated in the reggeon theory at a
consideration of so-called enhanced diagrams.

According to the phenomenology, an elastic hadron-hadron scattering
amplitude is a sum of contributions connected with various exchanges in the
t-channel. Each contribution has the following form in the impact parameter
representation:

AR
NN (~b, ξ) = ηRg

2
Re

∆Rξ e
− b2

4(R2+α′
R
ξ)

(R2
NN + α′

Rξ)
. (29.17)

Here |~b| is the impact parameter, ξ = ln(s), s is the squared CMS energy,
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ηR is the signature factor: ηR = 1 + i cot(π(1 + ∆R)/2) for a pole with
positive signature, and ηR = −1+ i cot(π(1+∆R)/2) for a pole with negative
signature. 1 + ∆R is an intercept of the reggeon trajectory, α′

R is its slope,
and the vertex of reggeon-nucleon interaction is parameterized as g(t) =
gR exp(R2

NN t/2), t is transferred 4-momentum.

Figure 29.16: Nonenhanced diagrams of NN -scattering.

Taking into account contributions of other diagrams of Fig. 29.16, one
can find NN -scattering amplitude:

γNN(~b, ξ) = 1 − e−ARNN (~b,ξ).

A calculation of amplitudes and cross sections for cascade interactions
requires a consideration of so-called enhanced diagrams like that shown in
Fig. 29.17.

Figure 29.17: Simplest enhanced diagrams of NN -scattering.

A contribution of the diagram Fig. 29.17a to the elastic scattering am-
plitude is given by the expression:

GEa(~b, ξ) = −G
ξ−ǫ
∫

ǫ

dξ′
∫

d2b′AR1
Nπ(~b−~b′, ξ−ξ′)AR2

πN(~b′, ξ′)AR3
πN(~b′, ξ′), (29.18)

where AπN is an amplitude of meson-nucleon scattering due to one-reggeon
exchange, G is a three reggeon’s coupling constant, ǫ is cutoff parameter
(ǫ ∼ 1). Here we use the model of multi-reggeon vertices proposed in Refs.
[25], where it was assumed that reggeon are coupled to one another via a
created virtual meson (pion) pair.
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The simplest enhanced diagrams were accounted for at a consideration
of hadron-nucleus scattering in Ref. [26, 27]. An effective computational
procedure was proposed in papers [28, 29], but it was not applied to an
analysis of experimental data. The structure of the enhanced diagrams and
their analytical properties were studied in [30].

Figure 29.18: Possible enhanced diagrams of hA-interactions.

In the reggeon approach the interaction of secondary particles with a nu-
cleus is described by cuttings of enhanced diagrams. Here the Abramovski-
Gribov-Kancheli (AGK) cutting rules [24] are frequently applied. The cor-
rections to them were discussed in [30] in an application to the problem of
particle cascading into the nucleus. It was shown there that inelastic rescat-
terings occur for any secondary particles, both slow and fast ones, and the
yield of enhanced diagrams leads to the enrichment of the spectrum by slow
particles in the target fragmentation region.

As in [25] we shall assume that the reggeon interaction vertices are small.
Therefore of the full set of enhanced diagrams the only important ones will
be those containing vertices where one of the reggeons split into several,
which then interact with different nucleons of the nucleus (figure 29.18a). In
studying interactions with nuclei, however, it is convenient, in the spirit of
the Glauber approach, to deal not with individual reggeons, but with sets
of them interacting with a given nucleons of the nucleus (figure 29.18b).
Unfortunately, the reggeon method of calculating the sum of the yields of
enhanced diagrams in the case of hA- and AA-interactions is not developed
for practical tasks. Hence we propose a simple model of estimating reggeon
cascading in hA- and AA-interactions.

Let us consider an yield of the first diagram of Fig. 29.18a:

Y = G

∫

dξ′d2b′FNπ(~b− ~b′, ξ− ξ′)×FπN(~b′ −~s1, ξ
′)FπN(~b′ −~s2, ξ

′), (29.19)
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where ~b is the impact parameter of a projectile hadron, ~s1 and ~s2 are im-
pact coordinates of two nuclear nucleons, ~b′ is the position of the reggeon
interaction vertex in the impact parameter plane, ξ′ is its rapidity.

Using Gaussian parameterization for FNπ (FπN = exp(−|~b|2/R2
πN ) and

neglecting its dependence on energy, we have

Y ≃ G(ξ0−2ǫ)
R2

πN

3
exp(−(~b− (~s1 +~s2)/2)2/3R2

πN)×exp(−(~s1 −~s2)
2/2R2

πN),

(29.20)
where RπN is the pion-nucleon interaction radius. According to the equation,
the contribution reaches a maximum if the nucleon coordinates, ~s1 and ~s2,
coincide, and decreases very fast with increasing the distance between the
nucleons.

Cutting the diagram, one can obtain that a probability, φ, to involve 2
neighboring nucleons is

φ(| ~s1 − ~s2 |) ∼ exp(−| ~s1 − ~s2 |2
R2

πN

) (29.21)

Schematically, the hadron-nucleus interaction process in the impact pa-
rameter plane can be represented as in Fig. 29.19, where the position of
the projectile hadron is marked by an open circle, the positions of nuclear
nucleons by closed circles, reggeon exchanges by dashed lines and the small
points are the coordinates of the reggeon interaction vertices.

Figure 29.19: Reggeon ”cas-
cade” in hA-scattering.

Let us consider the problem using quark-gluon approach. There were
some successful attempts to describe the hadron-nucleon elastic scattering
at low and intermediate energies (below 1 – 2 GeV) within the approach
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(see Refs. [31]). Especially, in Refs. [31] the amplitudes of ππ-, KK- and
NN -scatterings were found, and an agreement of the theoretical calculations
with experimental data was reached at the assumption that in the elastic
hadron scattering one-gluon exchange with following quark interchange be-
tween hadrons takes place (see Fig. 29.20a). At high energies, two-gluon
exchange approximation (Fig. 29.20b) works quite well (see Ref. [32]). What
kind of exchanges can dominate in hadron-nucleus and nucleus-nucleus in-
teractions?

Figure 29.20: Diagrams of quark-
gluon exchanges and corresponding
reggeon diagrams for hadron-hadron
interactions.

Figure 29.21: Diagrams of quark-
gluon exchanges and corresponding
reggeon diagrams for hadron-nucleus
interactions.

The simplest possible diagrams of processes with three nucleons are given
in Fig. 29.21. A calculation of their amplitudes according to Refs. [31] is a
serious mathematical problem. It can be simplified if one takes into account
an analogy between quark-gluon diagrams and reggeon diagrams: the quark
diagram of Fig. 29.20a corresponds to a one-nonvacuum reggeon exchange;
the diagram of Fig. 29.20b describes the pomeron exchange in the t-channe;
the diagram of Fig. 29.21a is in a correspondence with the enhanced reggeon
diagram of the pomeron splitting into two non-vacuum reggeons. The three
pomeron diafram (Fig. 29.21d) represent the more complicated process. It is
rather complicated to find a correspondence between reggeon diagrams and
the diagrams of Fig. 29.21b. Fig. 29.21c.

It seems obvious that the processes like one in Fig. 29.21d cannot domi-
nate in the elastic hadron-nucleus scattering because they are accompanied
by a production of high mass diffraction beam of particles in the intermediate
state. Thus, their yields are damped by a nuclear form-factor. According to
the same reason, the yields of processes like ones in Figs. 29.21a, 29.21b can
be small too. If it is not so, one can expect a large corrections to Glauber
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cross sections. The practice shows that the corrections to hadron-nucleus
cross sections must be lower than 5 – 7 %.

The yield of the diagram 29.21c can give a correction to the Glauber one-
scattering amplitude. The analogous corrections can be to the other terms of
Glauber series. They can re-normalize nuclear vertex constants. According
to Refs. [31] the yield can have a form:

Yc ∝ exp [−(~b− ~s1)/R
2
p] exp [−(~s1 − ~s2)/R

2
c ],

where Rp is a radius of high energy nucleon-nucleon interactions, Rc is an-
other low energy radius. Let us note that Yc does not depend as other reggeon
diagram yields on longitudinal coordinates of nucleons and on multiplicity
of produced particles. It is the main difference between ”reggeon cascading”
and usual cascading.

As well known, the intra-nuclear cascade model assumes that in a hadron-
nucleus collision, secondary particles are produced in a first inelastic inter-
action of a projectile with a nuclear nucleon. The produced particles can
interact with other target nucleons. A distribution for a distance l between
the first interaction and a second one has a form:

W (l)dl ∝ n

< l >
exp(− n

< l >
l),

where < l >= 1/σρA, σ is a hadron-nucleon cross section, n is a multiplicity
of the produced particles, and ρA ∼ 0.15 (fm)−3 is a nuclear density. At the
same time, the amplitudes or a cross sections of processes like Fig. 29.21 have
no dependence on l or n. Thus, one can expect that the ”cascade” in the
quark-gluon approach will be more restricted than in the cascade model. The
difference between the approaches can lead to different predictions for hadron
interactions with heavy nuclei due to a large multiplicity of the produced
particles.

Because it is complicated to calculate yields of various diagrams, and
take into account all possibilities, let us formulate a simple phenomenological
model keeping the main features of the above given approaches.

The model formulation

1. As it was said above, the ”reggeon” cascade is developed in the im-
pact parameter plane, and has features typical for branching processes.
Thus, for its description it is needed to determine a probability to in-
volve a nuclear nucleons into the ”cascade”. It is obvious, that the
probability depends on a difference of impact coordinates of new and
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previous involved nucleons. Looking at the yield of diagram 29.21c, a
functional form of the probability is chosen as:

P (|~si − ~sj |) = Cnd exp[−(~si − ~sj)
2/R2

c ], (29.22)

where ~si and ~sj are projections of the radii of ith and jth nucleons on
the impact parameter plane.

2. The ”cascade” is initiated by primary involved nucleons. These nucle-
ons are determined with a help of the Glauber approach.

3. All involved nucleons are ejected from nuclei.

The ”cascade” looks like that: a projectile particle interacts with some
intra-nuclear nucleons. These nucleons are called ”wounded” or participating
nucleons. The nucleons initiate the ”cascade”. A wounded nucleon can
involve a spectator nucleon into the ”cascade” with the probability (29.22).
The latter one can involve an other nucleon. The second nucleon can involve
a third one and so on. This algorithm is implemented in the FTF model.

We have tuned Cnd using the HARP-CDP data on proton production in
the p+ Cu interactions [33]. According to our estimations,

Cnd = e4 (y−2.1)/[1 + e4 (y−2.1)], R2
c = 1.5 (fm)2.

where y is a projectile rapidity. The value, 2.1, standing in the exponents
corresponds to Plab ∼ 4 GeV/c.

29.6.3 ”Fermi motion” of nuclear nucleons

In a ”standard” approach, a nucleus is considered as a potential well where
nucleons are freely moving. A particle falling on the nucleus changes its
momentum on a border of the well. Here a question appears, to whom
the recoil momentum must be ascribed? If the particle is absorbed by the
nucleus, probably, one has to imagine in a final state the potential well with
its nucleons moving with a momentum of the particle!? If some nucleons are
ejected from the nucleus, it is unknown in the case, what conditions have to
satisfy the nucleon momenta, and how will the ”residual” well be moving to
satisfy the energy-momentum conservation law? In the case of 3-dimensional
potential well it is unknown, how will be changed momentum components of
the particle on the well surface? Only a component transverse to the surface
will be changed, or a component which is parallel to the surface? A list of
questions can be extended at a consideration of nucleus-nucleus interactions.
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Two approaches are used at practice. According to the first one, the
nucleus is considered as a continuous media, and nucleons are appeared only
in points of the projectile interactions with the media. It seems natural in
the approach to sum momenta of all ejected particles. Subtracting it from
the initial momentum, one can find a momentum of residual nucleus. It is
unclear, what has to be done in nucleus-nucleus interactions?

In the second approach, space coordinates and momenta of the nucleons
are sampled according to some assumptions. In order to satisfy the energy-
momentum conservation law, the projectile momentum does not changed,
and each nucleon is ascribed by a new mass:

m =
√

(m0 − ǫb)2 − p2,

where m0 is a nucleon mass in the free state, ǫb is a nuclear binding energy
per nucleon, and p is a momentum of the nucleon.

In the approach, the nucleus is a collection of off-mass-shell particles.
Apparently, in the case of nucleus-nucleus interactions one has to consider
two such collections.

The energy-momentum conservation law is satisfied in the approach, if it
is satisfied in each collision of out-of-mass-shell nucleons. Though, there is a
problem with excitation energy of a nuclear residual. In most of the cases, it
is too small.

All the questions are absent in the approach proposed in the paper [34].
Let us consider it starting from simple example of a hadron interaction with
a bound system of two nucleons, (1, 2). It is assumed in the approach that
the process has two stages. At the first one, the system is dissociated:

h+ (1, 2) → h+ 1 + 2.

At the second stage a ”hard” collision of the projectile with the first or
second nucleon takes place. Neglecting transverse momenta let us write the
energy-momentum conservation law in the form:

{

ph = p′h + p1 + p2

Eh + E(1,2) = E ′
h + E1 + E2

As seen there are three variables and two equations. Thus, only one vari-
able can be chosen as an independent one. It can be p′h – hadron momentum
in the final state, or p1 or p2 – nucleon momentum in the state. We choose
as the variable the light cone momentum fraction:

x1 = (E1 − p1)/(E1 + E2 − p1 − p2).

424



It is invariant under the Lorentz transform along the collision axis.
Using the variable and the energy-momentum conservation law, one can

find:

W− = E1 + E2 − p1 − p2 = [s−m2
h + β2 − λ1/2(s,m2

h, β
2)]/2 W+

0 ,

where

W+
0 = Eh + E(1,2) + ph, W−

0 = Eh + E(1,2) − ph, s = W+
0 W

−
0 ,

β2 =
m2

1

x1
+

m2
2

1 − x1
.

Other kinematical variables are:

p1 =
m2

1

2x1W− − x1W
−

2
, E1 =

m2
1

2x1W− − +
x1W

−

2
,

p2 =
m2

2

2(1 − x1)W− − (1 − x1)W
−

2
, E2 =

m2
2

2(1 − x1)W− − +
(1 − x1)W

−

2
,

p′h = ph − p1 − p2, E ′
h = Eh + E(1,2) − E1 − E2.

So, for a simulation of the interactions, one has to determine only one
function: f(x1) – a distribution for x1. Distributions for p1 and p2 have
interesting properties: at ph → ∞ they become stable. At ph → 0, Eh +
E(1,2) > mh + m1 + m2 they become narrow and narrow. Thus, a typical
limiting fragmentation of bounded system takes place.

It is not complicated to introduce transverse momenta – p′⊥h, p⊥1 and
p⊥2, p

′
⊥h + p⊥1 + p⊥2 = 0. It is sufficient to replace mi by the transverse

masses: mi → m⊥i =
√

m2
i + p2

⊥i.
In the case of interactions of two composed systems, A and B, consist of

A and B constituents, respectively, let us describe ith constituent of A by the
variables:

x+
i = (EAi + piz)/W

+
A and ~pi⊥,

and jth constituent of B by the variables:

y−j = (EBj − qjz)/W
−
B and ~qi⊥.

Here EAi(EBi) and ~pi(~qi) are energy and momentum of ith constituent of the
system A (B).

W+
A =

A
∑

i=1

(EAi + piz), W−
B =

B
∑

i=1

(EBi − qiz).
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Using the variables, the energy-momentum conservation law takes the
form:

W+
A

2
+

1

2W+
A

A
∑

i=1

m2
i⊥
x+

i

+
W−

B

2
+

1

2W−
B

B
∑

i=1

µ2
i⊥
y−i

= E0
A + E0

B,

W+
A

2
− 1

2W+
A

A
∑

i=1

m2
i⊥
x+

i

− W−
B

2
+

1

2W−
B

B
∑

i=1

µ2
i⊥
y−i

= P 0
A + P 0

B, (29.23)

A
∑

i=1

~pi⊥ +
B
∑

i=1

~qi⊥ = 0,

where m2
i⊥ = m2

i + ~p2
i⊥, µ2

i⊥ = µ2
i + ~q2

i⊥, mi(µi) is a mass of ith constituent
of ().

The system of the equations (29.23) allows one to find W+
A , W−

B and all
kinematical properties of the particles at given {x+

i , ~pi⊥}, {y−i , ~qi⊥}.

W+
A = (W−

0 W
+
0 + α− β +

√
∆)/2W−

0 ; (29.24)

W−
B = (W−

0 W
+
0 − α + β +

√
∆)/2W+

0 ; (29.25)

W+
0 = (E0

A + E0
B) + (P 0

Az + P 0
Bz;

W−
0 = (E0

A + E0
B) − (P 0

Az + P 0
Bz;

α =

A
∑

i=1

m2
i⊥
x+

i

, β =

B
∑

i=1

µ2
i⊥
y−i

;

∆ = (W−
0 W

+
0 )2 + α2 + β2 − 2W−

0 W
+
0 α− 2W−

0 W
+
0 β − 2αβ;

piz = (W+
A x

+
i − m2

i⊥
x+

i W
+
A

)/2; qiz = −(W−
B y

−
i − µ2

i⊥
y−i W

−
B

)/2.

Consequently, the problem of binding energy and Fermi motion account-
ing at a simulation of composed system interactions comes to a definition of
distributions for x+

i , y
−
i , ~pi⊥, ~qi⊥.

Transverse momentum of an ejected nucleon (~p⊥) was sampled according
to the distribution:

dW ∝ exp(−~p2
⊥/ < p2

⊥ >)d2p⊥, (29.26)

< p2
⊥ >= 0.035 + 0.04

e4 (ylab−2.5)

1 + e4 (ylab−2.5)
(GeV/c)2. (29.27)

where ylab is a projectile nucleus rapidity in the rest frame of a target nucleus.
A sum of the transverse momenta with minus sign is ascribed to a residual
of the target nucleus.
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x+ or y− was sampled according to the distribution:

dW ∝ exp[−(x+ − 1/A)2/(d/A)2]dx+, d = 0.3. (29.28)

x+ of the nuclear residual is determined as 1 −∑x+
i .

29.6.4 Excitation energy of nuclear residuals

According to the materials presented above, excitation energy of a nuclear
residual has to be determined before a simulation of particle production. It
seems natural to assume that the energy is connected with a multiplicity of
ejected nuclear nucleons, as participating ones, as well as ones involved in the
reggeon cascading. Without the involved nucleons, the energy will be pro-
portional to a multiplicity of participating nucleons calculated in the Glauber
approach. Such approach was used in the paper [35] where proton-nucleus
interactions at intermediate energies were analyzed. There the multiplicity
of the nucleons was calculated in the Glauber approach. It was assumed also
that each recoil participating nucleon gives an yield in the excitation energy
distributed according to the law:

dW (E) =
1

〈E〉e
−E/〈E〉dE. (29.29)

Sum of the yields determines the residual excitation energy. The authors
of the paper [35] considered absorptions and ejections of the nucleons, and
decreasing projectile energy during interactions. They obtained a good agree-
ment of their calculations with experimental data on neutron production as
a function of the residual excitation energy.

Extending the approach [35], we assume, as a first step, that each partic-
ipating or involved nucleon adds 100 MeV to the nuclear residual excitation
energy. The excited residual is fragmenting using the Generalized Evapora-
tion Model (GEM) [36].

29.7 Validation of the FTF model

Bibliography

[1] B.Andersson et al. Nucl. Phys. B281 289 (1987).

[2] B.Nilsson-Almquist, E.Stenlund, Comp. Phys. Comm. 43 387 (1987).

[3] http://pdg.lbl.gov/2012/hadronic-xsections/hadron.html

427



[4] E. Bracci et al. CERN–HERA 72-1 (1972).

[5] G. Folger, V.N. Ivanchenko, J.P. Wellisch, Eur. Phys. J. A21 407
(2004).

[6] S.A. Bass et al. Prog. Part. Nucl. Phys. 41 225 (1998); M. Bleicher et
al. J. Phys. G25 1859 (1999).

[7] E. Bracci et al. CERN–HERA 73-1 (1973); V. Flaminio et al.CERN–
HERA 84-01 (1984).

[8] V. Flaminio et al. CERN–HERA 79-02 (1979).

[9] A.B. Kaidalov and P.E. Volkovitsky, Zeit. fur Phys. C63 517 (1994).

[10] V.V. Uzhinsky and A.S. Galoyan, arXiv: hep-ph/0212369 (2002).

[11] J.R. Cudell et al. (COMPLETE collab.) Phys. Rev. D65 074024
(2002).

[12] W.-M. Yao et al. (PDG), J. Phys. G33 337 (2006).

[13] M. Ishida and K. Igi, Phys. Rev. D79 096003 (2009).

[14] Bonn-Hamburg-Munich Collab. (V. Blobel et al.) Nucl. Phys. B69 454
(1974).

[15] K.A. Goulianos and J. Montanha, Phys. Rev. D59 114017 (1999).

[16] P. Bosettii et al., Nucl. Phys. B54 141 (1973).

[17] J. Whitmore, Phys. Rep. 10 273 (1974).

[18] NA22 Collab. (M. Adamus et al.) Zeit. fur Phys. C32 475 (1986);
BBCMS Collab. (I.V. Azhinenko et al.) Nucl. Phys. B123 493 (1977).

[19] Kh. Abdel-Waged and V.V. Uzhinsky, Phys. Atom. Nucl. 60 828 (1997)
(Yad. Fiz. 60 925 (1997)).
Kh. Abdel-Waged and V.V. Uzhinsky, J. Phys. G24 1723 (1997).

[20] R.J. Glauber, In: ”Lectures in Theoretical Physics”, Ed. W.E.Brittin
et al., v. 1, Interscience Publishers, N.Y., 1959.; R.J. Glauber, Proc. of
the 2nd Int. Conf. on High Energy Physics and Nuclear structure, (Re-
hovoth, 1967) Ed. G.A.Alexander, North-Holland, Amsterdam, 1967.

[21] V. Franco, Phys. Rev. 175 1376 (1968).

428



[22] S.Yu. Shmakov, V.V. Uzhinski and A.M. Zadorojny, Comp. Phys. Com-
mun. 54 125 (1989);
B. Alver, M. Baker, C. Loizides, and P. Steinberg, arxiv:0805.4411
[nucl-exp] (2005). M.L. Miller, K. Reygers, S.J. Sanders and P. Stein-
berg, Ann. Rev. Nucl. Part. Sci., 57 205 (2007);
W. Broniowski, M. Rybczynski, and P. Bozek, Comp. Phys. Commun.,
180 69 (2009).

[23] Yu.M. Shabelski, Sov. J. Part. Nucl., 12 430 (1981).

[24] V.A. Abramovsky, V.N. Gribov and O.V. Kancheli, Sov. J. Nucl. Phys.
18 308 (1974) (Yad. Fiz. 18 595 (1973)).

[25] A.B. Kaidalov, L.A. ponomarev and K.A. Ter-Martirosian, Sov. J.
Nucl. Phys. 44 468 (1986) (Yad. Fiz. 44 722 (1986)).

[26] R. Jengo and D.Treliani, Nucl. Phys. 117B 433 (1976).

[27] R.E. Camboa Saravi, Phys. Rev. 21 2021 (1980).

[28] A. Schwimmer, Nucl. Phys. 94B 445 (1975).

[29] L. Caneschi, A. Schwimmer and R.Jenco, Nucl. Phys. 108B 82 ( 1976).

[30] K.G. Boreskov, A.B. Kaidalov, S.M. Kiselev and N.Ya. Smorodinskaya,
Sov. J. Nucl. Phys. 53 356 (1991) (Yad. Fiz. 53 569 (1991)).

[31] T. Barnes and E.S.Swanson, Phys. Rev. D46 131 (1992);
T.Barnes, E.S.Swanson and J.Weinstein, Phys. Rev. D46 4868 (1992);
T.Barnes, S.Capstick, M.D.Kovarik and E.S. Swanson, Phys. Rev. C48
539 (1993);
T.Barnes and E.S.Swanson, Phys. Rev. C49 1166 (1992).

[32] F. Low, Phys. Rev. D12 163 (1975);
S. Nussinov, Phys. Rev. D14 246 (1976);
J. Gunion and D.Shoper, Phys. Rev. D15 2617 (1977);
E.M. Levin and M.G. Ryskin, Yad. Fiz. 34 619 (1981).

[33] HARP-CDP Collab. (A. Bolshakova et al.) Eur. Phys. J. C64 181
(2009).

[34] EMU-01 Collab. (M.I. Adamovich et al.) Zeit. fur Phys. A358 337
(1997).

429



[35] A.Y. Abul-Magd, W.A.Friedman and J.Hufner, Phys. Rev. C34 113
(1986).

[36] S. Furihata, NIM B171 251 (2000).

430



Chapter 30

Chiral Invariant Phase Space
Decay

30.1 Introduction

The CHIPS computer code is a quark-level event generator for the frag-
mentation of hadronic systems into hadrons. In contrast to other parton
models [1] CHIPS is nonperturbative and three-dimensional. It is based on
the Chiral Invariant Phase Space (ChIPS) model [2, 3, 4] which employs a
3D quark-level SU(3) approach. Thus Chiral Invariant Phase Space refers
to the phase space of massless partons and hence only light (u, d, s) quarks
can be considered. The c, b, and t quarks are not implemented in the model
directly, while they can be created in the model as a result of the gluon-gluon
or photo-gluon fusion. The main parameter of the CHIPS model is the crit-
ical temperature Tc ≈ 200 MeV . The probability of finding a quark with
energy E drops with the energy approximately as e−E/T , which is why the
heavy flavors of quarks are suppressed in the Chiral Invariant Phase Space.
The s quarks, which have masses less then the critical temperature, have an
effective suppression factor in the model.

The critical temperature Tc defines the number of 3D partons in the
hadronic system with total energy W . If masses of all partons are zero then
the number of partons can be found from the equation W 2 = 4T 2

c (n − 1)n.
The mean squared total energy can be calculated for any “parton” mass
(partons are usually massless). The corresponding formula can be found in
[5]. In this treatment the masses of light hadrons are fitted better than by
the chiral bag model of hadrons [6] with the same number of parameters. In
both models any hadron consists of a few quark-partons, but in the CHIPS
model the critical temperature defines the mass of the hadron, consisting of
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N quark-partons, while in the bag model the hadronic mass is defined by the
balance between the quark-parton internal pressure (which according to the
uncertainty principle increases when the radius of the “bag” decreases) and
the external pressure (B) of the nonperturbative vacuum, which has negative
energy density.

In CHIPS the interactions between hadrons are defined by the Isgur
quark-exchange diagrams, and the decay of excited hadronic systems in vac-
uum is treated as the fusion of quark-antiquark or quark-diquark partons.
An important feature of the model is the homogeneous distribution of asymp-
totically free quark-partons over the invariant phase space, as applied to the
fragmentation of various types of excited hadronic systems. In this sense
the CHIPS model may be considered as a generalization of the well-known
hadronic phase space distribution [7] approach, but it generates not only an-
gular and momentum distributions for a given set of hadrons, but also the
multiplicity distributions for different kinds of hadrons, which is defined by
the multistep energy dissipation (decay) process.

The CHIPS event generator may be applied to nucleon excitations, hadronic
systems produced in e+e− and pp̄ annihilation, and high energy nuclear exci-
tations, among others. Despite its quark nature, the nonperturbative CHIPS
model can also be used successfully at very low energies. It is valid for photon
and hadron projectiles and for hadron and nuclear targets. Exclusive event
generation models multiple hadron production, conserving energy, momen-
tum, and other quantum numbers. This generally results in a good descrip-
tion of particle multiplicities, inclusive spectra, and kinematic correlations in
multihadron fragmentation processes. Thus, it is possible to use the CHIPS
event generator in exclusive modeling of hadron cascades in materials.

In the CHIPS model, the result of a hadronic or nuclear interaction is the
creation of a quasmon which is essentially an intermediate state of excited
hadronic matter. When the interaction occurs in vacuum the quasmon can
dissipate energy by radiating particles according to the quark fusion mech-
anism [2] described in section 30.4. When the interaction occurs in nuclear
matter, the energy dissipation of a quasmon can be the result of quark ex-
change with surrounding nucleons or clusters of nucleons [3] (section 30.5),
in addition to the vacuum quark fusion mechanism.

In this sense the CHIPS model can be a successful competitor of the
cascade models, because it does not break the projectile, instead it captures
it, creating a quasmon, and then decays the quasmon in nuclear matter.
The perturbative mechanisms in deep inelastic scattering are in some sense
similar to the cascade calculations, while the parton splitting functions are
used instead of interactions. The nonperturbative CHIPS approach is making
a “short cut” for the perturbative calculations too. Similar to the time-like
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Figure 30.1: The CHIPS fit of the αs measurements.

s = W 2 evolution of the number of partons in the nonperturbative chiral
phase space (mentioned above) the space-like Q2 evolution of the number of
partons is given by N(Q2) = nV + 1

2αs(Q2)
, where nV is the number of valence

quark-partons. The running αs(Q
2) value is calculated in CHIPS as αs(Q

2) =
4π

β0ln(1+Q2/T 2
c )

, where β
nf=3)=9
0 . In other words, the critical temperature Tc

plays the role of ΛQCD and still cuts out heavy flavors of quark-partons and
high orders of the QCD calculation (NLO, NNLO, N3LO, etc.), substituting
for them the effective LO “short cut”. This simple approximation of αs fits
all the present measurements of this value (Fig. 30.1). It is very important
that αs is defined in CHIPS for any Q2, and that the number of partons at
Q2 = 0 converges to the number of valence quarks.

The effective αs is defined for all Q2, but at Q2 = 0 it is infinite. In
other words at Q2 = 0 the number of the virtual interacting partons goes to
infinity. This means that on the boundary between perturbative and non-
perturbative vacuums a virtual “thermostate” of gluons with an effective
temperature Tc exists. This “virtual thermostate” defines the phase space
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distribution of partons, and the “thermalization” can happen very quickly.
On the other hand, the CHIPS nonperturbative approach can be used below
Q2 = 1 GeV 2. This was done for the neutrino-nuclear interactions (section
30.8).

30.2 Fundamental Concepts

The CHIPS model is an attempt to use a set of simple rules which govern mi-
croscopic quark-level behavior to model macroscopic hadronic systems with
a large number of degrees of freedom. The invariant phase space distribu-
tion as a paradigm of thermalized chaos is applied to quarks, and simple
kinematic mechanisms are used to model the hadronization of quarks into
hadrons. Along with relativistic kinematics and the conservation of quantum
numbers, the following concepts are used:

• Quasmon: in the CHIPS model, a quasmon is any excited hadronic
system; it can be viewed as a continuous spectrum of a generalized
hadron. At the constituent level, a quasmon may be thought of as a
bubble of quark-parton plasma in which the quarks are massless and
the quark-partons in the quasmon are homogeneously distributed over
the invariant phase space. It may also be considered as a bubble of
the three-dimensional Feynman-Wilson [8] parton gas. The traditional
hadron is a particle defined by quantum numbers and a fixed mass or
a mass with a width. The quark content of the hadron is a secondary
concept constrained by the quantum numbers. The quasmon, however,
is defined by its quark content and its mass, and the concept of a
well defined particle with quantum numbers (a discrete spectrum) is of
secondary importance. A given quasmon hadronic state with fixed mass
and quark content can be considered as a superposition of traditional
hadrons, with the quark content of the superimposed hadrons being
the same as the quark content of the quasmon.

• Quark fusion: the quark fusion hypothesis determines the rules of
final state hadron production, with energy spectra reflecting the mo-
mentum distribution of the quarks in the system. Fusion occurs when
a quark-parton in a quasmon joins with another quark-parton from the
same quasmon and forms a new white hadron, which can be radiated. If
a neighboring nucleon (or the nuclear cluster) is present, quark-partons
may also be exchanged between the quasmon and the neighboring nu-
cleon (cluster). The kinematic condition applied to these mechanisms
is that the resulting hadrons are produced on their mass shells. The
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model assumes that the u, d and s quarks are effectively massless, which
allows the integrals of the hadronization process to be done easily and
the modeling decay algorithm to be accelerated. The quark mass is
taken into account indirectly in the masses of outgoing hadrons. The
type of the outgoing hadron is selected using combinatoric and kine-
matic factors consistent with conservation laws. In the present version
of CHIPS all mesons with three-digit PDG Monte Carlo codes [9] up
to spin 4, and all baryons with four-digit PDG codes up to spin 7

2
are

implemented.

• Critical temperature the only non-kinematic concept of the model is
the hypothesis of the critical temperature of the quasmon. This has a
40-year history, starting with Ref. [10] and is based on the experimental
observation of regularities in the inclusive spectra of hadrons produced
in different reactions at high energies. Qualitatively, the hypothesis of
a critical temperature assumes that the quark-gluon hadronic system
(quasmon) cannot be heated above a certain temperature. Adding more
energy to the hadronic system increases only the number of constituent
quark-partons while the temperature remains constant. The critical
temperature is the principal parameter of the model and is used to
calculate the number of quark-partons in a quasmon. In an infinite
thermalized system, for example, the mean energy of partons is 2T per
particle, the same as for the dark body radiation.

30.3 Code Development

Because the CHIPS event generator was originally developed only for final
state hadronic fragmentation, the initial interaction of projectiles with tar-
gets requires further development. Hence, the first applications of CHIPS
described interactions at rest, for which the interaction cross section is not
important [2], [3], and low energy photonuclear reactions [4], for which the
interaction cross section can be calculated easily [11]. With modification of
the first interaction algorithm the CHIPS event generator can be used for
all kinds of hadronic interaction. The Geant4 String Model interface to the
CHIPS generator [12], [13] also makes it possible to use the CHIPS code for
nuclear fragmentation at extremely high energies.

In the first published versions of the CHIPS event generator the class
G4Quasmon was the head of the model and all initial interactions were hid-
den in its constructor. More complicated applications of the model such as
anti-proton nuclear capture at rest and the Geant4 String Model interface to
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CHIPS led to the multi-quasmon version of the model. This required a change
in the structure of the CHIPS event generator classes. In the case of at-rest
anti-proton annihilation in a nucleus, for example, the first interaction occurs
on the nuclear periphery. After this initial interaction, a fraction (defined
by a special parameter of the model) of the secondary mesons independently
penetrate the nucleus. Each of these mesons can create a separate quasmon
in the interior of the nucleus. In this case the class G4Quasmon can no longer
be the head of the model. A new head class, G4QEnvironment, was developed
which can adopt a vector of projectile hadrons (G4QHadronVector) and cre-
ate a vector of quasmons, G4QuasmonVector. All newly created quasmons
then begin the energy dissipation process in parallel in the same nucleus.
The G4QEnvironment instance can be used both for vacuum and for nuclear
matter. If G4QEnvironment is created in vacuum, it is practically identical
to the G4Quasmon class, because in this case only one instance of G4Quasmon
is allowed. This leaves the model unchanged for hadronic interactions.

The convention adopted for the CHIPS model requires all its class names
to use the prefix G4Q in order to distinguish them from other Geant4 classes,
most of which use the G4 prefix. The intent is that the G4Q prefix will not
be used by other Geant4 projects.

30.4 Nucleon-Antinucleon Annihilation at Rest

In order to generate hadron spectra from the annihilation of a proton with
an anti-proton at rest, the number of partons in the system must be found.
For a finite system of N partons with a total center-of-mass energy M , the
invariant phase space integral, ΦN , is proportional to M2N−4. According to

the dimensional counting rule, 2N comes from
N
∏

i=1

d3pi
Ei

, and 4 comes from the

energy and momentum conservation function, δ4(P
¯
−∑p

¯
i). At a tempera-

ture T the statistical density of states is proportional to e−
M
T so that the

probability to find a system of N quark-partons in a state with mass M is
dW ∝ M2N−4e−

M
T dM . For this kind of probability distribution the mean

value of M2 is
< M2 >= 4N(N − 1) · T 2. (30.1)

When N goes to infinity one obtains for massless particles the well-known
< M >≡

√
< M2 > = 2NT result.

After a nucleon absorbs an incident quark-parton, such as a real or virtual
photon, for example, the newly formed quasmon has a total of N quark-
partons, where N is determined by Eq. 30.1. Choosing one of these quark-
partons with energy k in the center of mass system (CMS) of N partons, the
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spectrum of the remaining N − 1 quark-partons is given by

dW

kdk
∝ (MN−1)

2N−6, (30.2)

where MN−1 is the effective mass of the N − 1 quark-partons. This result
was obtained by applying the above phase-space relation (ΦN ∝ M2N−4) to
the residual N − 1 quarks. The effective mass is a function of the total mass
M ,

M2
N−1 = M2 − 2kM, (30.3)

so that the resulting equation for the quark-parton spectrum is:

dW

kdk
∝ (1 − 2k

M
)N−3. (30.4)

30.4.1 Meson Production

In this section, only the quark fusion mechanism of hadronization is consid-
ered. The quark exchange mechanism can take place only in nuclear matter
where a quasmon has neighboring nucleons. In order to decompose a quas-
mon into an outgoing hadron and a residual quasmon, one needs to calculate
the probability of two quark-partons combining to produce the effective mass
of the outgoing hadron. This requires that the spectrum of the second quark-
parton be calculated. This is done by following the same argument used to
determine Eq. 30.4. One quark-parton is chosen from the residual N − 1. It
has an energy q in the CMS of the N − 1 quark-partons. The spectrum is
obtained by substituting N − 1 for N and MN−1 for M in Eq. 30.4 and then
using Eq. 30.3 to get

dW

qdq
∝



1 − 2q

M
√

1 − 2k
M





N−4

. (30.5)

Next, one of the residual quark-partons must be selected from this spec-
trum such that its fusion with the primary quark-parton makes a hadron
of mass µ. This selection is performed by the mass shell condition for the
outgoing hadron,

µ2 = 2
k

√

1 − 2k
M

· q · (1 − cos θ). (30.6)

Here θ is the angle between the momenta, k and q of the two quark-partons
in the CMS of N − 1 quarks. Now the kinematic quark fusion probability
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can be calculated for any primary quark-parton with energy k:

P (k,M, µ) =

∫



1 − 2q

M
√

1 − 2k
M





N−4

× δ



µ2 − 2kq(1 − cos θ)
√

1 − 2k
M



 qdqd cos θ. (30.7)

Using the δ-function1 to perform the integration over q one gets:

P (k,M, µ) =

∫
(

1 − µ2

Mk(1 − cos θ)

)N−4

×





µ2
√

1 − 2k
M

2k(1 − cos θ)





2

d

(

1 − cos θ

µ2

)

, (30.8)

or

P (k,M, µ) =
M − 2k

4k

∫
(

1 − µ2

Mk(1 − cos θ)

)N−4

× d

(

1 − µ2

Mk(1 − cos θ)

)

. (30.9)

After the substitution z = 1 − 2q
MN−1

= 1 − µ2

Mk(1−cos θ)
, this becomes

P (k,M, µ) =
M − 2k

4k

∫

zN−4dz, (30.10)

where the limits of integration are 0 when cos θ = 1 − µ2

M ·k , and

zmax = 1 − µ2

2Mk
, (30.11)

when cos θ = −1. The resulting range of θ is therefore −1 < cos θ < 1− µ2

M ·k .
Integrating from 0 to z yields

M − 2k

4k · (N − 3)
· zN−3, (30.12)

1 If g(x0)=0,
∫

f(x)δ [g(x)] dx =
∫

f(x)δ[g(x)]
g′(x) dg(x) = f(x0)

g′(x0)
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and integrating from 0 to zmax yields the total kinematic probability for
hadronization of a quark-parton with energy k into a hadron with mass µ:

M − 2k

4k · (N − 3)
· zN−3

max . (30.13)

The ratio of expressions 30.12 and 30.13 can be treated as a random number,
R, uniformly distributed on the interval [0,1]. Solving for z then gives

z =
N−3
√
R · zmax. (30.14)

In addition to the kinematic selection of the two quark-partons in the
fusion process, the quark content of the quasmon and the spin of the candi-
date final hadron are used to determine the probability that a given type of
hadron is produced. Because only the relative hadron formation probabili-
ties are necessary, overall normalization factors can be dropped. Hence the
relative probability can be written as

Ph(k,M, µ) = (2sh + 1) · zN−3
max · Ch

Q. (30.15)

Here, only the factor zN−3
max is used since the other factors in equation 30.13

are constant for all candidates for the outgoing hadron. The factor 2sh + 1
counts the spin states of a candidate hadron of spin sh, and Ch

Q is the number
of ways the candidate hadron can be formed from combinations of the quarks
within the quasmon. In making these combinations, the standard quark wave
functions for pions and kaons were used. For η and η′ mesons the quark wave
functions η = ūu+d̄d

2
− s̄s√

2
and η′ = ūu+d̄d

2
+ s̄s√

2
were used. No mixing was

assumed for the ω and φ meson states, hence ω = ūu+d̄d√
2

and ϕ = s̄s.
A final model restriction is applied to the hadronization process: after a

hadron is emitted, the quark content of the residual quasmon must have a
quark content corresponding to either one or two real hadrons. When the
quantum numbers of a quasmon, determined by its quark content, cannot
be represented by the quantum numbers of a real hadron, the quasmon is
considered to be a virtual hadronic molecule such as π+π+ or K+π+, in which
case it is defined in the CHIPS model to be a Chipolino pseudo-particle.

To fuse quark-partons and create the decay of a quasmon into a hadron
and residual quasmon, one needs to generate randomly the residual quasmon
mass m, which in fact is the mass of the residual N − 2 quarks. Using an
equation similar to 30.3) one finds that

m2 = z · (M2 − 2kM). (30.16)
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Using Eqs. 30.14 and 30.11, the mass of the residual quasmon can be ex-
pressed in terms of the random number R:

m2 = (M − 2k) · (M − µ2

2k
) · N−3

√
R. (30.17)

At this point, the decay of the original quasmon into a final state hadron and
a residual quasmon of mass m has been simulated. The process may now be
repeated on the residual quasmon.

This iterative hadronization process continues as long as the residual
quasmon mass remains greater than mmin, whose value depends on the type
of quasmon. For hadron-type residual quasmons

mmin = mQC
min +mπ0 , (30.18)

where mQC
min is the minimum hadron mass for the residual quark content (QC).

For Chipolino-type residual quasmons consisting of hadrons h1 and h2,

mmin = mh1 +mh2 . (30.19)

These conditions insure that the quasmon always has enough energy to decay
into at least two final state hadrons, conserving four-momentum and charge.

If the remaining CMS energy of the residual quasmon falls below mmin,
then the hadronization process terminates with a final two-particle decay. If
the parent quasmon is a Chipolino consisting of hadrons h1 and h2, then a
binary decay of the parent quasmon into mh1 and mh2 takes place. If the
parent quasmon is not a Chipolino then a decay into mQC

min and mh takes
place. The decay into mQC

min and m0
π is always possible in this case because of

condition 30.18.
If the residual quasmon is not Chipolino-type, andm > mmin, the hadroniza-

tion loop can still be finished by the resonance production mechanism, which
is modeled following the concept of parton-hadron duality [14]. If the resid-
ual quasmon has a mass in the vicinity of a resonance with the same quark
content (ρ or K∗ for example), there is a probability for the residual quas-
mon to convert to this resonance.2 In the present version of the CHIPS event
generator the probability of convert to the resonance is given by

Pres =
m2

min

m2
. (30.20)

Hence the resonance with the mass-squared valuem2
r closest to m2 is selected,

and the binary decay of the quasmon into mh and mr takes place.

2When comparing quark contents, the quark content of the quasmon is reduced by
canceling quark-antiquark pairs of the same flavor.
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With more detailed experimental data, it will be possible to take into
account angular momentum conservation, as well as C-, P - and G-parity
conservation. In the present version of the generator, η and η′ are suppressed
by a factor of 0.3. This factor was tuned using data from experiments on
antiproton annihilation at rest in liquid hydrogen and can be different for
other hadronic reactions. It is possible to vary it when describing other
reactions.

Another parameter, s/u, controls the suppression of heavy quark pro-
duction [15]. For proton-antiproton annihilation at rest the strange quark-
antiquark sea was found to be suppressed by the factor s/u = 0.1. In
the JETSET [15] event generator, the default value for this parameter is
s/u = 0.3. The lower value may be due to quarks and anti-quarks of colliding
hadrons initially forming a non-strange sea, with the strange sea suppressed
by the OZI rule [16]. This question is still under discussion [17] and demands
further experimental measurements. The s/u parameter may differ for other
reactions. In particular, for e+e− reactions it can be closer to 0.3.

Finally, the temperature parameter has been fixed at T = 180 MeV.
In earlier versions of the model it was found that this value successfully
reproduced spectra of outgoing hadrons in different types of medium-energy
reactions.

The above parameters were used to fit not only the spectrum of pions
Fig. 30.2,a and the multiplicity distribution for pions Fig. 30.2,b but also
branching ratios of various measured [18, 19] exclusive channels as shown in
Figs. 30.3, 30.4, 30.5. In Fig. 30.5 one can see many decay channels with
higher meson resonances. The relative contribution of events with meson
resonances produced in the final state is 30 - 40 percent, roughly in agreement
with experiment. The agreement between the model and experiment for
particular decay modes is within a factor of 2-3 except for the branching
ratios to higher resonances. In these cases it is not completely clear how
the resonance is defined in a concrete experiment. In particular, for the
a2ω channel the mass sum of final hadrons is 2100 MeV with a full width of
about 110 MeV while the total initial energy of the pp̄ annihilation reaction is
only 1876.5 MeV. This decay channel can be formally simulated by an event
generator using the tail of the Breit-Wigner distribution for the a2 resonance,
but it is difficult to imagine how the a2 resonance can be experimentally
identified 2Γ away from its mean mass value.

30.4.2 Baryon Production

To model fragmentation into baryons the POPCORN idea [20] was used,
which assumes the existence of diquark-partons. The assumption of massless
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Figure 30.2: (a) (left): momentum distribution of charged pions produced
in proton-antiproton annihilation at rest. The experimental data are from
[18], and the histogram was produced by the CHIPS Monte Carlo. The
experimental spectrum is normalized to the measured average charged pion
multiplicity, 3.0. (b) (right): pion multiplicity distribution. Data points were
taken from compilations of experimental data [19], and the histogram was
produced by the CHIPS Monte Carlo. The number of events with kaons in
the final state is shown in pion multiplicity bin 9, where no real 9-pion events
are generated or observed experimentally. In the model, the percentage of
annihilation events with kaons is close to the experimental value of 6% [19].
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Figure 30.3: Branching probabilities for different channels in proton-
antiproton annihilation at rest. The experimental data are from [19], and
the histogram was produced by the CHIPS Monte Carlo.
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Figure 30.4: Branching probabilities for different channels with three-particle
final states in proton-antiproton annihilation at rest. The points are experi-
mental data [19] and the histogram is from the CHIPS Monte Carlo.

diquarks is somewhat inconsistent at low energies, as is the assumption of
massless s-quarks, but it is simple and it helps to generate baryons in the
same way as mesons.

Baryons are heavy, and the baryon production in pp̄ annihilation reac-
tions at medium energies is very sensitive to the value of the temperature.
If the temperature is low, the baryon yield is small, and the mean multiplic-
ity of pions increases very noticeably with center-of-mass energy as seen in
Fig. 30.6. For higher temperature values the baryon yield reduces the pion
multiplicity at higher energies. The existing experimental data [21], shown
in Fig. 30.6, can be considered as a kind of “thermometer” for the model.
This thermometer confirms that the critical temperature is about 200 MeV.

It can be used as a tool for the Monte Carlo simulation of a wide variety
of hadronic reactions. The CHIPS event generator can be used not only for
“phase-space background” calculations in place of the standard GENBOD
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Figure 30.5: Branching probabilities for different channels with two-particle
final states in proton-antiproton annihilation at rest. The points are experi-
mental data [19] and the histogram is from the CHIPS Monte Carlo.
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routine [7], but even for taking into account the reflection of resonances
in connected final hadron combinations. Thus it can be useful for physics
analysis too, even though its main range of application is the simulation of
the evolution of hadronic and electromagnetic showers in matter at medium
energies.

30.5 Nuclear Pion Capture at Rest and Pho-

tonuclear Reactions Below the Delta(3,3)

Resonance

When compared with the first “in vacuum” version of the model, described
in Section 30.4, modeling hadronic fragmentation in nuclear matter is more
complicated because of the much greater number of possible secondary frag-
ments. However, the hadronization process itself is simpler in a way. In
vacuum, the quark-fusion mechanism requires a quark-parton partner from
the external (as in JETSET [15]) or internal (the quasmon itself, Section
30.4) quark-antiquark sea. In nuclear matter, there is a second possibility:
quark exchange with a neighboring hadronic system, which could be a nu-
cleon or multinucleon cluster.

In nuclear matter the spectra of secondary hadrons and nuclear fragments
reflect the quark-parton energy spectrum within a quasmon. In the case of
inclusive spectra that are decreasing steeply with energy, and correspond-
ingly steeply decreasing spectra of the quark-partons in a quasmon, only
those secondary hadrons which get the maximum energy from the primary
quark-parton of energy k contribute to the inclusive spectra. This extreme
situation requires the exchanged quark-parton with energy q, coming toward
the quasmon from the cluster, to move in a direction opposite to that of the
primary quark-parton. As a result the hadronization quark exchange process
becomes one-dimensional along the direction of k. If a neighboring nucleon
or nucleon cluster with bound mass µ̃ absorbs the primary quark-parton
and radiates the exchanged quark-parton in the opposite direction, then the
energy of the outgoing fragment is E = µ̃ + k − q, and the momentum is
p = k+ q. Both the energy and the momentum of the outgoing nuclear frag-
ment are known, as is the mass µ̃ of the nuclear fragment in nuclear matter,
so the momentum of the primary quark-parton can be reconstructed using
the approximate relation

k =
p+ E − B ·mN

2
. (30.21)
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Here B is the baryon number of the outgoing fragment (µ̃ ≈ B ·mN) and mN

is the nucleon mass. In Ref. [22] it was shown that the invariant inclusive
spectra of pions, protons, deuterons, and tritons in proton-nucleus reactions
at 400 GeV [23] not only have the same exponential slope but almost co-
incide when they are plotted as a function of k = p+Ekin

2
. Using data at

10 GeV [24], it was shown that the parameter k, defined by Eq. 30.21, is
also appropriate for the description of secondary anti-protons produced in
high energy nuclear reactions. This means that the extreme assumption of
one-dimensional hadronization is a good approximation.

The same approximation is also valid for the quark fusion mechanism. In
the one-dimensional case, assuming that q is the momentum of the second
quark fusing with the primary quark-parton of energy k, the total energy of
the outgoing hadron is E = q + k and the momentum is p = k − q. In the
one-dimensional case the secondary quark-parton must move in the opposite
direction with respect to the primary quark-parton, otherwise the mass of
the outgoing hadron would be zero. So, for mesons k = p+E

2
, in accordance

with Eq. 30.21. In the case of anti-proton radiation, the baryon number
of the quasmon is increased by one, and the primary antiquark-parton will
spend its energy to build up the mass of the antiproton by picking up an anti-
diquark. Thus, the energy conservation law for antiproton radiation looks
like E + mN = q + k and k = p+E+mN

2
, which is again in accordance with

Eq. 30.21.
The one-dimensional quark exchange mechanism was proposed in 1984

[22]. Even in its approximate form it was useful in the analysis of inclusive
spectra of hadrons and nuclear fragments in hadron-nuclear reactions at high
energies. Later the same approach was used in the analysis of nuclear frag-
mentation in electro-nuclear reactions [25]. Also in 1984 the quark-exchange
mechanism developed in the framework of the non-relativistic quark model
was found to be important for the explanation of the short distance features
of NN interactions [26]. Later it was successfully applied toK−p interactions
[27]. The idea of the quark exchange mechanism between nucleons was use-
ful even for the explanation of the EMC effect [28]. For the non-relativistic
quark model, the quark exchange technique was developed as an alternative
to the Feynman diagram technique at short distances [29].

The CHIPS event generator models quark exchange processes, taking into
account kinematic and combinatorial factors for asymptotically free quark-
partons. In the naive picture of the quark-exchange mechanism, one quark-
parton tunnels from the asymptotically free region of one hadron to the
asymptotically free region of another hadron. To conserve color, another
quark-parton from the neighboring hadron must replace the first quark-
parton in the quasmon. This makes the tunneling mutual, and the resulting
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Q(M) CRQ(MN-1) RQ(Mmin)

PC(µ)˜ CF(µc) F(µ)

k q

Figure 30.7: Diagram of the quark exchange mechanism.

process is quark exchange.
The experimental data available for multihadron production at high en-

ergies show regularities in the secondary particle spectra that can be related
to the simple kinematic, combinatorial, and phase space rules of such quark
exchange and fusion mechanisms. The CHIPS model combines these mech-
anisms consistently.

Fig. 30.7 shows a quark exchange diagram which helps to keep track of
the kinematics of the process. It was shown in Section 30.4 that a quasmon,
Q is kinematically determined by a few asymptotically free quark-partons
homogeneously distributed over the invariant phase space. The quasmon
mass M is related to the number of quark-partons N through

< M2 >= 4N(N − 1) · T 2, (30.22)

where T is the temperature of the system.
The spectrum of quark partons can be calculated as

dW

k∗dk∗
∝
(

1 − 2k∗

M

)N−3

, (30.23)

where k∗ is the energy of the primary quark-parton in the center-of-mass
system of the quasmon. After the primary quark-parton is randomized and
the neighboring cluster, or parent cluster, PC, with bound mass µ̃ is selected,
the quark exchange process begins. To follow the process kinematically one
should imagine a colored, compound system consisting of a stationary, bound
parent cluster and the primary quark. The primary quark has energy k in
the lab system,

k = k∗ · EN + pN · cos(θk)

MN
, (30.24)
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where MN , EN and pN are the mass, energy, and momentum of the quasmon
in the lab frame. The mass of the compound system, CF , is µc =

√

(µ̃+ k)2,
where µ̃ and k are the corresponding four-vectors. This colored compound
system decays into a free outgoing nuclear fragment, F , with mass µ and a
recoiling quark with energy q. q is measured in the CMS of µ̃, which coincides
with the lab frame in the present version of the model because no cluster
motion is considered. At this point one should recall that a colored residual
quasmon, CRQ, with mass MN−1 remains after the radiation of k. CRQ is
finally fused with the recoil quark q to form the residual quasmon RQ. The
minimum mass of RQ should be greater than Mmin, which is determined by
the minimum mass of a hadron (or Chipolino double-hadron as defined in
Section 30.4) with the same quark content.

All quark-antiquark pairs with the same flavor should be canceled in the
minimum mass calculations. This imposes a restriction, which in the center-
of-mass system of µc, can be written as

2q · (E − p · cos θqCQ) +M2
N−1 > M2

min, (30.25)

where E is the energy and p is the momentum of the colored residual quasmon
with mass MN−1 in the CMS of µc. The restriction for cos θqCQ then becomes

cos θqCQ <
2qE −M2

min +M2
N−1

2qp
, (30.26)

which implies

q >
M2

N−1 −M2
min

2 · (E + p)
. (30.27)

A second restriction comes from the nuclear Coulomb barrier for charged
particles. The Coulomb barrier can be calculated in the simple form:

ECB =
ZF · ZR

A
1
3
F + A

1
3
R

(MeV), (30.28)

where ZF and AF are the charge and atomic weight of the fragment, and
ZR and AR are the charge and atomic weight of the residual nucleus. The
obvious restriction is

q < k + µ̃− µ−ECB. (30.29)

In addition to 30.27 and 30.29, the quark exchange mechanism imposes
restrictions which are calculated below. The spectrum of recoiling quarks is
similar to the k∗ spectrum in the quasmon (30.23):

dW

q dq d cos θ
∝
(

1 − 2q

µ̃

)n−3

, (30.30)
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where n is the number of quark-partons in the nucleon cluster. It is assumed
that n = 3AC , where AC is the atomic weight of the parent cluster. The
tunneling of quarks from one nucleon to another provides a common phase
space for all quark-partons in the cluster.

An additional equation follows from the mass shell condition for the out-
going fragment,

µ2 = µ̃2 + 2µ̃ · k − 2µ̃ · q − 2k · q · (1 − cos θkq), (30.31)

where θkq is the angle between quark-parton momenta in the lab frame. From
this equation q can be calculated as

q =
µ̃ · (k − ∆)

µ̃+ k · (1 − cos θkq)
, (30.32)

where ∆ is the covariant binding energy of the cluster ∆ = µ2−µ̃2

2µ̃
. The quark

exchange probability integral can be then written in the form:

P (k, µ̃, µ) =
∫

δ
[

µ2 − µ̃2 − 2µ̃ · k + 2µ̃ · q + 2k · q · (1 − cos θkq)
]

×
(

1 − 2q

µ̃

)n−3

qdq·d cos θkq. (30.33)

Using the δ-function to perform the integration over q one obtains

P (k, µ̃, µ) =

∫ (

1 − 2(k − ∆)

µ̃+ k(1 − cos θkq)

)n−3

× µ̃(k − ∆)

2[µ̃+ k(1 − cos θkq)]2
dcos θkq (30.34)

or

P (k, µ̃, µ) =

∫
(

1 − 2(k − ∆)

µ̃+ k(1 − cos θkq)

)n−3

×
(

µ̃(k − ∆)

µ̃+ k(1 − cos θkq)

)2

× d

(

µ̃+ k(1 − cos θkq)

µ̃(k − ∆)

)

. (30.35)

The result of the integration is

P (k, µ̃, µ) =
µ̃

4k(n− 2)

×
[

(

1 − 2(k − ∆)

µ̃+ 2k

)n−2

high

−
(

1 − 2(k − ∆)

µ̃

)n−2

low

]

. (30.36)
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For randomization it is convenient to make z a random parameter

z = 1 − 2(k − ∆)

µ̃+ k(1 − cos θkq)
= 1 − 2q

µ̃
. (30.37)

From (30.36) one can find the high and the low limits of the randomization.
The first limit is for k: k > ∆. It is similar to the restriction for quasmon
fragmentation in vacuum: k∗ > µ2

2M
. The second limit is k = µ2

2µ̃
, when

the low limit of randomization becomes equal to zero. If k < µ2

2µ̃
, then

−1 < cos θkq < 1 and zlow = 1 − 2(k−∆)
µ̃

. If k > µ2

2µ̃
, then the range of cos θkq

is −1 < cos θkq <
µ2

kµ̃
− 1 and zlow = 0. This value of zlow should be corrected

using the Coulomb barrier restriction (30.29), and the value of zhigh should
be corrected using the minimum residual quasmon restriction (30.27). In the
case of a quasmon with momentum much less than k it is possible to impose
tighter restrictions than (30.27) because the direction of motion of the CRQ
is opposite to k. So cos θqCQ = − cos θkq , and from (30.32) one can find that

cos θqCQ = 1 − µ̃ · (k − ∆ − q)

k · q . (30.38)

So in this case the equation (30.27) can be replaced by the more stringent
one:

q >
M2

N−1 −M2
min + 2p·µ̃

k
(k − ∆)

2 · (E + p+ p·µ̃
k

)
. (30.39)

The integrated kinematical quark exchange probability (in the range from
zlow to zhigh) is

µ̃

4k(n− 2)
· zn−2, (30.40)

and the total kinematic probability of hadronization of the quark-parton with
energy k into a nuclear fragment with mass µ is

µ̃

4k(n− 2)
·
(

zn−2
high − zn−2

low

)

. (30.41)

This can be compared with the vacuum probability of the quark fusion mech-
anism from Section 30.4:

M − 2k

4k(N − 3)
zN−3
max . (30.42)

The similarity is very important, as the absolute probabilities define the
competition between vacuum and nuclear channels.
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Equations (30.40) and (30.41) can be used for randomization of z:

z = zlow +
n−2
√
R · (zhigh − zlow), (30.43)

where R is a random number, uniformly distributed in the interval (0,1).
Eq. (30.41) can be used to control the competition between different

nuclear fragments and hadrons in the hadronization process, but in contrast
to the case of “in vacuum” hadronization it is not enough to take into account
only the quark combinatorics of the quasmon and the outgoing hadron. In
the case of hadronization in nuclear matter, different parent bound clusters
should be taken into account as well. For example, tritium can be radiated
as a result of quark exchange with a bound tritium cluster or as a result of
quark exchange with a bound 3He cluster.

To calculate the yield of fragments it is necessary to calculate the proba-
bility to find a cluster with certain proton and neutron content in a nucleus.
One could consider any particular probability as an independent parameter,
but in such a case the process of tuning the model would be difficult. We
proposed the following scenario of clusterization. A gas of quasi-free nucleons
is close to the phase transition to a liquid bound by strong quark exchange
forces. Precursors of the liquid phase are nuclear clusters, which may be con-
sidered as “drops” of the liquid phase within the nucleus. Any cluster can
meet another nucleon and absorb it (making it bigger), or it can release one
of the nucleons (making it smaller). The first parameter ε1 is the percentage
of quasi-free nucleons not involved in the clusterization process. The rest of
the nucleons (1 − ε1) clusterize. We assume that since on the periphery of
the nucleus the density is lower, one can consider only dibaryon clusters, and
neglect triple-baryon clusters. Still we denote the number of nucleons clus-
terized in dibaryons on the periphery by the parameter ε2. In the dense part
of the nucleus, strong quark exchange forces make clusters out of quasi-free
nucleons with high probability. To characterize the distribution of clusters
the clusterization probability parameter ω was used.

If the number of nucleons involved in clusterization is a = (1−ε1−ε2) ·A,
then the probability to find a cluster consisting of ν nucleons is defined by
the distribution

Pν ∝ Ca
ν · ων−1, (30.44)

where Ca
ν is the corresponding binomial coefficient. The coefficient of pro-

portionality can be found from the equation

a = b ·
a
∑

ν=1

ν · Ca
ν · ων−1 = b · a · (1 + ω)a−1. (30.45)
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Thus, the number of clusters consisting of ν nucleons is

Pν =
Ca

ν · ων−1

(1 + ω)a−1
. (30.46)

For clusters with an even number of nucleons we used only isotopically sym-
metric configurations (ν = 2n, n protons and n neutrons) and for odd clusters
(ν = 2n + 1) we used only two configurations: n neutrons with n + 1 pro-
tons and n + 1 neutrons with n protons. This restriction, which we call
“isotopic focusing”, can be considered an empirical rule of the CHIPS model
which helps to describe data. It is applied in the case of nuclear clusteri-
zation (isotopically symmetric clusters) and in the case of hadronization in
nuclear matter. In the hadronization process the quasmon is shifted from the
isotopic symmetric state (e.g., by capturing a negative pion) and transfers
excess charge to the outgoing nuclear cluster. This tendency is symmetric
with respect to the quasmon and the parent cluster.

The temperature parameter used to calculate the number of quark-partons
in a quasmon (see equation 30.22) was chosen to be T = 180 MeV, which is
the same as in Section 30.4.

CHIPS is mostly a model of fragmentation, conserving energy, momen-
tum, and charge. But to compare it with experimental data one needs to
model also the first interaction of the projectile with the nucleus. For proton-
antiproton annihilation this was easy, as we assumed that in the interaction
at rest, a proton and antiproton always create a quasmon. In the case of
pion capture the pion can be captured by different clusters. We assumed
that the probability of capture is proportional to the number of nucleons in
a cluster. After the capture the quasmon is formed, and the CHIPS generator
produces fragments consecutively and recursively, choosing at each step the
quark-parton four-momentum k, the type of parent and outgoing fragment,
and the four-momentum of the exchange quark-parton q, to produce a final
state hadron and the new quasmon with less energy.

In the CHIPS model we consider this process as a chaotic process with
large number of degrees of freedom and do not take into account any final
state interactions of outgoing hadrons. Nevertheless, when the excitation
energy dissipates, and in some step the quasmon mass drops below the mass
shell, the quark-parton mechanism of hadronization fails. To model the event
exclusively, it becomes necessary to continue fragmentation at the hadron
level. Such a fragmentation process is known as nuclear evaporation. It
is modeled using the non-relativistic phase space approach. In the non-
relativistic case the phase space of nucleons can be integrated as well as in
the ultra-relativistic case of quark-partons.
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The general formula for the non-relativistic phase space can be found
starting with the phase space for two particles Φ̃2. It is proportional to the
center-of-mass momentum:

Φ̃2(W2) ∝
√

W2, (30.47)

where W2 is a total kinetic energy of the two non-relativistic particles. If the
phase space integral is known for n−1 hadrons then it is possible to calculate
the phase space integral for n hadrons:

Φ̃n(Wn) =

∫

Φ̃n−1(Wn−1) · δ(Wn −Wn−1 − Ekin)

×
√

EkindEkindWn−1. (30.48)

Using (30.47) and (30.48) one can find that

Φ̃n(Wn) ∝W
3
2
n− 5

2
n (30.49)

and the spectrum of hadrons, defined by the phase space of residual n − 1
nucleons, can be written as

dN√
EkindEkin

∝
(

1 − Ekin

Wn

)
3
2
n−4

. (30.50)

This spectrum can be randomized. The only problem is from which level
one should measure the thermal kinetic energy when most nucleons in nuclei
are filling nuclear levels with zero temperature. To model the evaporation
process we used this unknown level as a parameter U of the evaporation
process. Comparison with experimental data gives U = 1.7 MeV. Thus, the
total kinetic energy of A nucleons is

WA = U · A+ Eex, (30.51)

where Eex is the excitation energy of the nucleus.
To be radiated, the nucleon should overcome the threshold

Uthresh = U + Ubind + ECB, (30.52)

where Ubind is the separation energy of the nucleon, and ECB is the Coulomb
barrier energy which is non-zero only for positive particles and can be calcu-
lated using formula (30.28).

From several experimental investigations of nuclear pion capture at rest,
four published results have been selected here, which constitute, in our opin-
ion, a representative data set covering a wide range of target nuclei, types
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of produced hadrons and nuclear fragments, and their energy range. In the
first publication [47] the spectra of charged fragments (protons, deuterons,
tritons, 3He, 4He) in pion capture were measured on 17 nuclei within one
experimental setup. To verify the spectra we compared them for a carbon
target with detailed measurements of the spectra of charged fragments given
in Ref. [48]. In addition, we took 6Li spectra for a carbon target from the
same paper.

The neutron spectra were added from Ref. [49] and Ref. [50]. We present
data and Monte Carlo distributions as the invariant phase space function
f = dσ

pdE
depending on the variable k = p+Ekin

2
as defined in equation (30.21).

Spectra on 9Be, 12C, 28Si (27Al for secondary neutrons), 59Co (64Cu for
secondary neutrons), and 181Ta are shown in Figs. 30.8 through 30.12. The
data are well-described, including the total energy spent in the reaction to
yield the particular type of fragments.

The evaporation process for nucleons is also well-described. It is exponen-
tial in k, and looks especially impressive for Si/Al and Co/Cu data, where
the Coulomb barrier is low, and one can see proton evaporation as a con-
tinuation of the evaporation spectra from secondary neutrons. This way the
exponential behavior of the evaporation process can be followed over 3 orders
of magnitude. Clearly seen is the transition region at k ≈ 90 MeV (kinetic
energy 15 − 20 MeV) between the quark-level hadronization process and
the hadron-level evaporation process. For light target nuclei the evaporation
process becomes much less prominent.

The 6Li spectrum on a carbon target exhibits an interesting regularity
when plotted as a function of k: it practically coincides with the spectrum
of 4He fragments, and shows exponential behavior in a wide range of k,
corresponding to a few orders of magnitude in the invariant cross section.
To keep the figure readable, the 6Li spectrum generated by CHIPS was not
plotted. It coincides with the 4He spectrum at k > 200 MeV, and under-
estimates lithium emission at lower energies, similarly to the 3He and tritium
data.

Between the region where hadron-level processes dominate and the kine-
matic limit, all hadronic spectrum slopes become similar when plotted as
a function of k. In addition to this general behavior there is the effect of
strong proton-neutron splitting. For protons and neutrons it reaches almost
an order of magnitude. To model such splitting in the CHIPS generator,
the mechanism of “isotopic focusing” was used, which locally transfers the
negative charge from the pion to the first radiated nuclear fragment.

Thus, the model qualitatively describes all typical features of the pion cap-
ture process. The question is what can be extracted from the experimental
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Table 30.1: Clusterization parameters
9Be 12C 28Si 59Co 181Ta

ε1 0.45 0.40 0.35 0.33 0.33
ε2 0.15 0.15 0.05 0.03 0.02
ω 5.00 5.00 5.00 5.00 5.00

data with this tool. The clusterization parameters are listed in Table 30.1.
No formal fitting procedure has been performed. A balanced qualitative
agreement with all data was used to tune the parameters. The difference
between the ε2

ε1
ratio and the parameter ω (which is the same for all nuclei) is

an indication that there is a phase transition between the gas phase and the
liquid phase of the nucleus. The large value of the parameter ω, determining
the average size of a nuclear cluster, is critical in describing the model spectra
at large k, where the fragment spectra approach the kinematic limits.

Using the same parameters of clusterization, the γ absorption data [51]
on Al and Ca nuclei were compared in Fig. 30.13) to the CHIPS results. One
can see that the spectra of secondary protons and deuterons are qualitatively
described by the CHIPS model.

The CHIPS model covers a wide spectrum of hadronic reactions with
a large number of degrees of freedom. In the case of nuclear reactions
the CHIPS generator helps to understand phenomena such as the order-of-
magnitude splitting of neutron and proton spectra, the high yield of energetic
nuclear fragments, and the emission of nucleons which kinematically can be
produced only if seven or more nucleons are involved in the reaction.

The CHIPS generator allows the extraction of collective parameters of
a nucleus such as clusterization. The qualitative conclusion based on the
fit to the experimental data is that most of the nucleons are clusterized, at
least in heavy nuclei. The nuclear clusters can be considered as drops of a
liquid nuclear phase. The quark exchange makes the phase space of quark-
partons of each cluster common, stretching the kinematic limits for particle
production.

The hypothetical quark exchange process is important not only for nuclear
clusterization, but also for the nuclear hadronization process. The quark
exchange between the excited cluster (quasmon) and a neighboring nuclear
cluster, even at low excitation level, operates with quark-partons at energies
comparable with the nucleon mass. As a result it easily reaches the kinematic
limits of the reaction, revealing the multi-nucleon nature of the process.

Up to now the most under-developed part of the model has been the
initial interaction between projectile and target. That is why we started with
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Pion capture on 9Be nucleus
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Figure 30.8: Comparison of the CHIPS model results with experimental
data on proton, neutron, and nuclear fragment production in the capture of
negative pions on 9Be. Proton [47] and neutron [49] experimental spectra are
shown in the upper left panel by open circles and open squares, respectively.
The model calculations are shown by the two corresponding solid lines. The
same arrangement is used to present 3He [47] and tritium [47] spectra in the
lower left panel. Deuterium [47] and 4He [47] spectra are shown in the right
panels of the figure by open squares and lines (CHIPS model). The average
kinetic energy carried away by each nuclear fragment is shown in the panels
by the two numbers: first is the average calculated using the experimental
data shown; second is the model result.
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Pion capture on 12C nucleus

neutrons
〈Ekin〉e/m =  79.8 / 67.8 MeV

protons
〈Ekin〉e/m =  8.7 / 9.8 MeV

dN
/p

dE
 (

M
eV

-2
 C

ap
tu

re
-1

) 
   

   
   

   
   

   
 

deuterons
〈Ekin〉e/m =  5.2 / 5.4 MeV

Helium-3
〈Ekin〉e/m =  0.6 / 0.8 MeV

tritium
〈Ekin〉e/m =  2.5 / 1.8 MeV

k = (p+Ekin)/2 (MeV)                                         

Lithium

Helium-4
〈Ekin〉e/m =  5.3 / 5.9 MeV

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0 200 400 0 200 400

Figure 30.9: Same as in Figure 30.8, for pion capture on 12C. The experimen-
tal neutron spectrum is taken from [50]. In addition, the detailed data on
charged particle production, including the 6Li spectrum, taken from Ref. [48],
are superimposed on the plots as a series of dots.
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Pion capture on 28Si nucleus
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Figure 30.10: Same as in Figure 30.8, for pion capture on 28Si nucleus. The
experimental neutron spectrum is taken from [50], for the reaction on 27Al.
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Pion capture on 59Co nucleus
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Figure 30.11: Same as in Figure 30.8, for pion capture on 59Co. The experi-
mental neutron spectrum is taken from [50], for the reaction on 64Cu.

461



Pion capture on 181Ta nucleus
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Figure 30.12: Same as in Figure 30.8, for pion capture on 181Ta. The exper-
imental neutron spectrum is taken from [50].
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40Ca(γ,p) spectral cross section
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Figure 30.13: Comparison of CHIPS model with experimental data [51] on
proton and deuteron production at 90◦ in photonuclear reactions on 27Al and
40Ca at 59 – 65 MeV. Open circles and solid squares represent the experimen-
tal proton and deuteron spectra, respectively. Solid and dashed lines show
the results of the corresponding CHIPS model calculation. Statistical errors
in the CHIPS results are not shown and can be judged by the point-to-point
variations in the lines. The comparison is absolute, using the values of to-
tal photonuclear cross section 3.6 mb for Al and 5.4 mb for Ca, as given in
Ref. [52].
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proton-antiproton annihilation and pion capture on nuclei at rest, because
the interaction cross section is not involved. The further development of
the model will require a better understanding of the mechanism of the first
interaction. However, we believe that even the basic model will be useful in
the understanding the nature of multi-hadron fragmentation. Because of the
model’s features, it is a suitable candidate for the hadron production and
hadron cascade parts of the newly developed event generation and detector
simulation Monte Carlo computer codes.

30.6 Modeling of real and virtual photon in-

teractions with nuclei below pion pro-

duction threshold

In the example of the photonuclear reaction discussed in the Appendix D,
namely the description of 90◦ proton and deuteron spectra in A(γ,X) reac-
tions at Eγ = 59−65 MeV, the assumption on the initial Quasmon excitation
mechanism was the same. The description of the 90◦ data was satisfactory,
but the generated data showed very little angular dependence, because the
velocity of the quasmons produced in the initial state was small, and the
fragmentation process was almost isotropic. Experimentally, the angular de-
pendence of secondary protons in photo-nuclear reactions is quite strong even
at low energies (see, for example, Ref. [53]). This is a challenging experimen-
tal fact which is difficult to explain in any model. It’s enough to say that if
the angular dependence of secondary protons in the γ40Ca interaction at 60
MeV is analyzed in terms of relativistic boost, then the velocity of the source
should reach 0.33c; hence the mass of the source should be less than pion
mass. The main point of this discussion is to show that the quark-exchange
mechanism used in the CHIPS model can not only model the clusterization of
nucleons in nuclei and hadronization of intranuclear excitations into nuclear
fragments, but it can also model complicated mechanisms of the interaction
of photons and hadrons in nuclear matter.

In Ref. Appendix D a quark-exchange diagram was defined which helps
to keep track of the kinematics of the quark-exchange process (see Fig. 1 in
Apendix D). To apply the same diagram to the first interaction of a photon
with a nucleus, it is necessary to assume that the quark-exchange process
takes place in nuclei continuously, even without any external interaction.
Nucleons with high momenta do not leave the nucleus because of the lack
of excess energy. The hypothesis of the CHIPS model is that the quark-
exchange forces between nucleons [26] continuously create clusters in normal
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nuclei. Since a low-energy photon (below the pion production threshold)
cannot be absorbed by a free nucleon, other absorption mechanisms involving
more than one nucleon have to be used.

The simplest scenario is photon absorption by a quark-parton in the nu-
cleon. At low energies and in vacuum this does not work because there is
no corresponding excited baryonic state. But in nuclear matter it is possible
to exchange this quark with a neighboring nucleon or a nuclear cluster. The
diagram for the process is shown in Fig. 30.14. In this case the photon is
absorbed by a quark-parton from the parent cluster PC1, and then the sec-
ondary nucleon or cluster PC2 absorbs the entire momentum of the quark
and photon. The exchange quark-parton q restores the balance of color, pro-
ducing the final-state hadron F and the residual Quasmon RQ. The process
looks like a knockout of a quasi-free nucleon or cluster out of the nucleus. It
should be emphasized that in this scenario the CHIPS event generator pro-
duces not only “quasi-free” nucleons but “quasi-free” fragments as well. The
yield of these quasi-free nucleons or fragments is concentrated in the forward
direction.

The second scenario which provides for an angular dependence is the
absorption of the photon by a colored fragment (CF2 in Fig. 30.15). In this
scenario, both the primary quark-parton with momentum k and the photon
with momentum qγ are absorbed by a parent cluster (PC2 in Fig. 30.15),
and the recoil quark-parton with momentum q cannot fully compensate the
momentum k + qγ . As a result the radiation of the secondary fragment in
the forward direction becomes more probable.

In both cases the angular dependence is defined by the first act of hadroniza-
tion. Further fragmentation of the residual quasmon is almost isotropic.

It was shown in Section 30.4 that the energy spectrum of quark partons
in a quasmon can be calculated as

dW

k∗dk∗
∝
(

1 − 2k∗

M

)N−3

, (30.53)

where k∗ is the energy of the primary quark-parton in the center-of-mass
system of the quasmon, M is the mass of the quasmon. The number N of
quark-partons in the quasmon can be calculated from the equation

< M2 >= 4 ·N · (N − 1) · T 2. (30.54)

Here T is the temperature of the system.
In the first scenario of the γA interaction (Fig. 30.14), because both

interacting particles are massless, we assumed that the cross section for the
interaction of a photon with a particular quark-parton is proportional to the
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PC1(µ1)˜ CF1 RQ(Mmin)

PC2(µ2)˜ CF2 F(µ)

k q(ω,q
γ )

Figure 30.14: Diagram of photon absorption in the quark exchange mecha-
nism. PC1,2 stand for parent clusters with bound masses µ̃1,2, participating
in the quark-exchange. CF1,2 stand for the colored nuclear fragments in the
process of quark exchange. F(µ) denotes the outgoing hadron with mass µ in
the final state. RQ is the residual Quasmon which carries the rest of the exci-
tation energy and momentum. Mmin characterizes its minimum mass defined
by its quark content. Dashed lines indicate colored objects. The photon is
absorbed by a quark-parton k from the parent cluster PC1.

PC1(µ1)˜ CF1 RQ(Mmin)

PC2(µ2)˜

CF2

F(µ)

k q

(ω,q γ)

Figure 30.15: Diagram of photon absorption in the quark-exchange mecha-
nism. The notation is the same as in Fig. 30.14. The photon is absorbed by
the colored fragment CF2.
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charge of the quark-parton squared, and inversely proportional to the mass
of the photon-parton system s, which can be calculated as

s = 2ωk(1 − cos(θk)). (30.55)

Here ω is the energy of the photon, and k is the energy of the quark-parton
in the laboratory system (LS):

k = k∗ · EN + pN · cos(θk)

MN
. (30.56)

For a virtual photon, equation (30.55) can be written as

s = 2k(ω − qγ · cos(θk)), (30.57)

where qγ is the momentum of the virtual photon. In both cases equa-
tion (30.53) transforms into

dW

dk∗
∝
(

1 − 2k∗

M

)N−3

, (30.58)

and the angular distribution in cos(θk) converges to a δ-function. In the case
of a real photon cos(θk) = 1, and in the case of a virtual photon cos(θk) = ω

qγ
.

In the second scenario for the photon interaction (Fig. 30.15) we assumed
that both the photon and the primary quark-parton, randomized according to
Eq. (30.53), enter the parent cluster PC2, and after that the normal procedure
of quark exchange continues, in which the recoiling quark-parton q returns
to the first cluster.

An additional parameter in the model is the relative contribution of both
mechanisms. As a first approximation we assumed equal probability, but
in the future, when more detailed data are obtained, this parameter can be
adjusted.

We begin the comparison with the data on proton production in the
40Ca(γ,X) reaction at 90◦ and 59–65 MeV [51], and at 60◦ and 150◦ and 60
MeV [54]. We analyzed these data together to compare the angular depen-
dence generated by CHIPS with experimental data. The data are presented
as a function of the invariant inclusive cross section f = dσ

ppdEp
depending on

the variable k = Tp+pp
2

, where Tp and pp are the kinetic energy and momen-
tum of the secondary proton. As one can see from Fig. 30.16, the angular
dependence of the proton yield in photoproduction on 40Ca at 60 MeV is
reproduced quite well by the CHIPS event generator.

The second set of measurements that we use for the benchmark compari-
son deals with the secondary proton yields in 12C(γ,X) reactions at 123 and
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40Ca(γ,p) spectral cross section
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Figure 30.16: Comparison of the CHIPS model results (lines) with the exper-
imental data [51] on proton spectra at 90◦ in the photonuclear reactions on
40Ca at 59–65 MeV (open circles), and proton spectra at 60◦ (triangles) and
150◦ (diamonds). Statistical errors in the CHIPS results are not shown but
can be judged by the point-to-point variations in the lines. The comparison
is absolute, using the value of the total photonuclear cross section of 5.4 mb
for Ca, as given in Ref. [52].
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12C(γ,p) reaction at Eγ = 123 MeV
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Figure 30.17: Comparison of the CHIPS model results (lines) with the ex-
perimental data [55] on proton spectra at 57◦, 77◦, 97◦, 117◦, and 127◦ in the
photonuclear reactions on 12C at 123 MeV (open circles). The value of the
total photonuclear cross section was set to 1.8 mb.
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12C(γ,p) reaction at Eγ = 151 MeV
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Figure 30.18: Same as in Fig. 30.17, for the photon energy 151 MeV.
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12C(γ*,p) spectral cross section
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Figure 30.19: Comparison of the CHIPS model results (line) with the exper-
imental data [56] (open circles) on the proton spectrum measured in parallel
kinematics in the 12C(e,e′p) reaction at an energy transfer equal to 210 MeV
and momentum transfer equal to 585 MeV/c. Statistical errors in the CHIPS
result are not shown but can be judged by the point-to-point variations in
the line. The relative normalization is arbitrary.
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151 MeV [55], which is still below the pion production threshold on a free
nucleon. Inclusive spectra of protons have been measured in γ12C reactions
at 57◦, 77◦, 97◦, 117◦, and 127◦. Originally, these data were presented as
a function of the missing energy. We present the data in Figs. 30.17 and
30.18 together with CHIPS calculations in the form of the invariant inclusive
cross section dependent on k. All parameters of the model such as tem-
perature T and parameters of clusterization for the particular nucleus were
the same as in Appendix D, where pion capture spectra were fitted. The
agreement between the experimental data and the CHIPS model results is
quite remarkable. Both data and calculations show significant strength in
the proton yield cross section up to the kinematic limits of the reaction. The
angular distribution in the model is not as prominent as in the experimental
data, but agrees well qualitatively.

Using the same parameters, we applied the CHIPS event generator to
the 12C(e,e′p) reaction measured in Ref.[56]. The proton spectra were mea-
sured in parallel kinematics in the interaction of virtual photons with energy
ω = 210 MeV and momentum qγ = 585 MeV/c. To account for the exper-
imental conditions in the CHIPS event generator, we have selected protons
generated in the forward direction with respect to the direction of the virtual
photon, with the relative angle Θqp < 6◦. The CHIPS generated distribution
and the experimental data are shown in Fig. 30.19 in the form of the invari-
ant inclusive cross section as a function of k. The CHIPS event generator
works only with ground states of nuclei so we did not expect any narrow
peaks for 1p3/2-shell knockout or for other shells. Nevertheless we found that
the CHIPS event generator fills in the so-called “1s1/2-shell knockout” region,
which is usually artificially smeared by a Lorentzian [57]. In the regular frag-
mentation scenario the spectrum of protons below k = 300 MeV is normal;
it falls down to the kinematic limit. The additional yield at k > 300 MeV is
a reflection of the specific first act of hadronization with the quark exchange
kinematics. The slope increase with momentum is approximated well by the
model, but it is obvious that the yield close to the kinematic limit of the
2 → 2 reaction can only be described in detail if the excited states of the
residual nucleus are taken into account.

The angular dependence of the proton yield in low-energy photo-nuclear
reactions is described in the CHIPS model and event generator. The most
important assumption in the description is the hypothesis of a direct inter-
action of the photon with an asymptotically free quark in the nucleus, even
at low energies. This means that asymptotic freedom of QCD and dispersion
sum rules [46] can in some way be generalized for low energies. The knockout
of a proton from a nuclear shell or the homogeneous distributions of nuclear
evaporation cannot explain significant angular dependences at low energies.
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The same mechanism appears to be capable of modeling proton yields in
such reactions as the 16C(e,e′p) reaction measured at MIT Bates [56], where
it was shown that the region of missing energy above 50 MeV reflects “two-
or-more-particle knockout” (or the “continuum” in terms of the shell model).
The CHIPS model may help to understand and model such phenomena.

30.7 Chiral invariant phase-space decay in high

energy hadron nuclear reactions

Chiral invariant phase-space decay can be used to de-excite an excited
hadronic system. This possibility can be exploited to replace the intra-
nuclear cascading after a high energy primary interaction takes place. The
basic assumption in this is that the energy loss of the high energy hadron
in nuclear matter is approximately constant per unit path length (about 1
GeV/fm). This energy is extracted from the soft part of the particle spec-
trum of the primary interaction, and from particles with formation times
that place them within the nuclear boundaries.

Several approaches of transfering this energy into quasmons were studied,
and comparisons with energy spectra of particles emitted in the backward
hemisphere were made for a range of materials. Best results were achieved
with a model that creates one quasmon per particle absorbed in the nucleus.

30.8 Neutrino-nuclear interactions

The simulation of DIS reactions includes reactions with high Q2. The first
approximation of the Q2-dependent photonuclear cross-sections at high Q2

was made in [11], where the modified photonuclear cross sections of virtual
photons [34] were used. The structure functions of protons and deuterons
have been approximated in CHIPS by the sum of non-perturbative multi-
peripheral and non-perturbative direct interactions of virtual photons with
hadronic partons:

F2(x,Q
2) = [A(Q2) · x−∆(Q2) +B(Q2) · x] · (1 − x)N(Q2)−2, (30.59)

where A(Q2) = ē2S ·D · U , B(Q2) = ē2V · (1 −D) · V , ē2V (p) = 1
3
, ē2V (d) = 5

18
,

ē2S = 1
3
−

1
3
− 5

18

1+m2
φ/Q2 +

1
3
− 5

18

1+m2
J/ψ

/Q2 −
1
3
− 19

63

1+m2
Υ/Q2 , N = 3+ 0.5

αs(Q2)
, αs(Q

2) = 4π

β0ln(1+Q2

Λ2 )
,

β
(nf=3)
0 = 9, Λ = 200 MeV , U = (3 C(Q2)+N−3)·Γ(N−∆)

N ·Γ(N−1)·Γ(1−∆)
, V = 3(N − 1),

D(Q2) = H ·S(Q2)
(

1 − 1
2
S(Q2)

ē2
V

ē2
S

)

, S =
(

1 +
m2
ρ

Q2

)−αP (Q2)

, αP = 1+∆(Q2),
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Figure 30.20: Fit of γA cross sections with different H values. Data are
from [11].
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∆ = 1+r
12.5+2r

, r =
(

Q2

1.66

)1/2

, C = 1+f
g·(1+f/.24)

, f =
(

Q2

0.08

)2

, g = 1 + Q2

21.6
. The

parton distributions are normalized to the unit total momentum fraction.
The photonuclear cross sections are calculated by the eikonal formula:

σtot
γ =

[

4πα

Q2
F2

(

Q2

2Mν
,Q2

)]ν=E

Q2=0

, (30.60)

An example of the approximation is shown in Fig. 30.20. One can see that the
hadronic resonances are “melted” in nuclear matter and the multi-peripheral
part of the cross section (high energy) is shadowed.

The differential cross section of the (ν, µ) reaction was approximated as

yd2σν,ν̄

dydQ2
=

G2
F ·M4

W

4π · (Q2 +M2
W )2

[

c1(y) · f2(x,Q
2) ± c2(y) · xf3(x,Q

2)
]

, (30.61)
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(open markers, dashed lines) structure functions measured by the CDHSW
[36] (circles) and CCFR [37] (squares) experiments.

where c1(y) = 2 − 2y + y2

1+R
, R = σL

σT
, c2(y) = y(2 − y). As ē2V = ē2S = 1

in Eq.30.59, hence f2(x,Q
2) =

[

D · U · x−∆ + (1 −D) · V · x
]

· (1 − x)N−2,
xf3(x,Q

2) =
[

D · Uf3 · x−∆ + (1 −D) · V · x
]

· (1 − x)N−2, with D = H ·
S(Q2) ·

(

1 − 1
2
S(Q2)

)

and Uf3 = 3·C(Q2)·Γ(N−∆)
N ·Γ(N−1)Γ(1−∆)

. The approximation is com-

pared with data in Fig.30.21 for deuterium [35] and in Fig.30.22 for iron
[36, 37]. It must be emphasized that the CHIPS parton distributions are the
same as for electromagnetic reactions.

For the (ν, µ) amplitudes one can not apply the optical theorem, To cal-
culate the total cross sections, it is therefore necessary to integrate the dif-
ferential cross sections first over x and then over Q2. For the (ν, µ) reactions
the differential cross section can be integrated with good accuracy even for
low energies because it does not have the 1

Q4 factor of the boson propaga-
tor. The quasi-elastic part of the total cross-section can be calculated for
W < mN + mπ. The total (ν, µ) cross-sections are shown in Fig.30.23(a,b).
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Figure 30.23: Fit of total (a,b) and quasi-elastic (c,d) cross-sections of (ν, µ)
reactions (Geant4 database). The solid line is the CHIPS approximation (for
other lines see text).

The dashed curve corresponds to the GRV [38] approximation of parton dis-
tributions and the dash-dotted curves correspond to the KMRS [39] approx-
imation. Neither approximation fits low energies, because the perturbative
calculations give parton distributions only for Q2 > 1 GeV 2. In [40] an at-
tempt was made to freeze the DIS parton distributions at Q2 = 1 and to
use them at low Q2. The W < 1.4 GeV part of DIS was replaced by the
quasi-elastic and one pion production contributions, calculated on the basis
of the low energy models. The results of [40] are shown by the dotted lines.
The nonperturbative CHIPS approximation (solid curves) fits both total and
quasi-elastic cross sections even at low energies.

The quasi-elastic (ν, µ) cross sections are shown in Fig.30.23(c,d). The
CHIPS approximation (solid line) is compared with calculations made in [40]
(the dotted line) and the best fit of the V − A theory was made in [41] (the
dashed lines). One can see that CHIPS gives reasonable agreement.
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The Q2 spectra for each energy are known as an intermediate result of
the calculation of total or quasi-elastic cross sections. For the quasi-elastic
interactions (W < mN +mπ) one can use x = 1 and simulate a binary reac-
tion. In the final state the recoil nucleon has some probability of interacting
with the nucleus. If W > mN +mπ the Q2 value is randomized and therefore
the Q2 dependent coefficients (the number of partons in non-perturbative
phase space N , the Pomeron intercept αP , the fraction of the direct inter-
actions, etc.) can be calculated. Then for fixed energy and Q2 the neutrino
interaction with quark-partons (directly or through the Pomeron ladder) can
be randomized and the secondary parton distribution can be calculated. In
vacuum or in nuclear matter the secondary partons are creating quasmons
[2, 3] which decay to secondary hadrons.

30.9 Conclusion.

For users who would like to improve the interaction part of the CHIPS
event generator for their own specific reactions, some advice concerning data
presentation is useful.

It is a good idea to use a normalized invariant function ρ(k)

ρ =
2E · d3σ

σtot · d3p
∝ dσ

σtot · pdE
,

where σtot is the total cross section of the reaction. The simple rule, then,
is to divide the distribution over the hadron energy E by the momentum
and by the reaction cross section. The argument k can be calculated for any
outgoing hadron or fragment as

k =
E + p− B ·mN

2
,

which is the energy of the primary quark-parton. Because the spectrum of
the quark-partons is universal for all the secondary hadrons or fragments, the
distributions over this parameter have a similar shape for all the secondaries.
They should differ only when the kinematic limits are approached or in the
evaporation region. This feature is useful for any analysis of experimental
data, independent of the CHIPS model.

Some concluding remarks should be made about the parameters of the
model. The main parameter, the critical temperature Tc, should not be
varied. A large set of data confirms the value 180 MeV while from the
mass spectrum of hadrons it can be found more precisely as 182 MeV. The
clusterization parameter is 4. which is just about 4π/3. If the quark exchange
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starts at the mean distance between baryons in the dense part of the nucleus,
then the radius of the clusterization sphere is twice the ”the radius of the
space occupied by the baryon”. It gives 8 for the parameter, but the space
occupied by the baryon can not be spherical; only cubic subdivision of space
is possible so the factor π/6 appears. But this is a rough estimate, so 4
or even 5 can be tried. The surface parameter fD varies slightly with A,
growing from 0 to 0.04. For the present CHIPS version the recommended
parameters for low energies are:

A T s/u eta noP fN fD Cp rM sA
Li 180. 0.1 0.3 223 .4 .00 4. 1.0 0.4
Be 180. 0.1 0.3 223 .4 .00 4. 1.0 0.4
C 180. 0.1 0.3 223 .4 .00 4. 1.0 0.4
O 180. 0.1 0.3 223 .4 .02 4. 1.0 0.4
F 180. 0.1 0.3 223 .4 .03 4. 1.0 0.4
Al 180. 0.1 0.3 223 .4 .04 4. 1.0 0.4
Ca 180. 0.1 0.3 223 .4 .04 4. 1.0 0.4
Cu 180. 0.1 0.3 223 .4 .04 4. 1.0 0.4
Ta 180. 0.1 0.3 223 .4 .04 4. 1.0 0.4
U 180. 0.1 0.3 223 .4 .04 4. 1.0 0.4

The vacuum hadronization weight parameter can be bigger for light nuclei
and smaller for heavy nuclei, but 1.0 is a good guess. The s/u parameter
is not yet tuned, as it demands strange particle production data. A guess
is that if there are as many uū and dd̄ pairs in the reaction as in the pp̄
interaction, the parameter can be 0.1. In other cases it is closer to 0.3 as in
other event generators. But it is bestnot to touch any parameters for the first
experience with the CHIPS event generator. Only the incident momentum,
the PDG code of the projectile, and the CHIPS style PDG code of the target
need be changed.

30.10 Status of this document

02.12.05 neutrino interactions section and figures added by M.V. Kossov
26.04.03 first four sections re-written by D.H. Wright
01.01.01 created by M.V. Kossov and H.P. Wellisch
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Chapter 31

Bertini Intranuclear Cascade
Model in Geant4

31.1 Introduction

This cascade model is a re-engineered version of the INUCL code and includes
the Bertini intra-nuclear cascade model with excitons, a pre-equilibrium
model, a nucleus explosion model, a fission model, and an evaporation model.
It treats nuclear reactions initiated by long-lived hadrons (p, n, π,K,Λ,Σ,Ξ,Ω)
and γs with energies between 0 and 10 GeV. Presented here is an overview of
the models and a review of results achieved from simulations and comparisons
with experimental data.

The intranuclear cascade model (INC) was was first proposed by Ser-
ber in 1947 [19]. He noticed that in particle-nuclear collisions the deBroglie
wavelength of the incident particle is comparable (or shorter) than the aver-
age intra-nucleon distance. Hence, a description of interactions in terms of
particle-particle collisions is justified.

The INC has been used succesfully in Monte Carlo simulations at interme-
diate energies since Goldberger made the first hand-calculations in 1947 [9].
The first computer simulations were done by Metropolis et al. in 1958 [16].
Standard methods in INC implementations were developed when Bertini pub-
lished his results in 1968 [3]. An important addition to INC was the exciton
model introduced by Griffin in 1966 [10].

The current presentation describes the implementation of the Bertini INC
model within the Geant4 hadronic physics framework [8]. This framework
is flexible and allows for the modular implementation of various kinds of
hadronic interactions.
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31.2 The Geant4 Cascade Model

Inelastic particle-nucleus collisions are characterized by both fast and slow
components. The fast (10−23 − 10−22s) intra-nuclear cascade results in a
highly excited nucleus which may decay by fission or pre-equilibrium emis-
sion. The slower (10−18 − 10−16s) compound nucleus phase follows with
evaporation. A Boltzmann equation must be solved to treat the collision
process in detail.

The intranuclear cascade (INC) model developed by Bertini [3, 4] solves
the Boltzmann equation on average. This model has been implemented
in several codes such as HETC [1]. Our model, which is based on a re-
engineering of the INUCL code [20], includes the Bertini intranuclear cascade
model with excitons, a pre-equilibrium model, a simple nucleus explosion
model, a fission model, and an evaporation model.

The target nucleus is modeled by up to six concentric shells of constant
density as an approximation to the continuously changing density distribu-
tion of nuclear matter within nuclei. The cascade begins when an incident
particle strikes a nucleon in the target nucleus and produces secondaries. The
secondaries may in turn interact with other nucleons or be absorbed. The
cascade ends when all particles, which are kinematically able to do so, es-
cape the nucleus. At that point energy conservation is checked. Relativistic
kinematics is applied throughout the cascade.

31.2.1 Model Limits

The model is valid for incident p, n, π,K,Λ,Σ,Ξ,Ω and γs with energies
between 0 and 10 GeV. All types of nuclear targets are allowed.

The necessary condition of validity of the INC model is λB/v << τc <<
∆t, where δB is the deBroglie wavelenth of the nucleons, v is the average
relative velocity between two nucleons and ∆t is the time interval between
collisions. At energies below 200MeV , this condition is no longer strictly
valid, and a pre-quilibrium model must be invoked. At energies greater than
≈ 10 GeV) the INC picture breaks down. This model has been tested against
experimental data at incident kinetic energies between 100 MeV and 10 GeV.

31.2.2 Intranuclear Cascade Model

The basic steps of the INC model are summarized as follows:

1. the space point at which the incident particle enters the nucleus is
selected uniformly over the projected area of the nucleus,

485



2. the total particle-particle cross sections and region-depenent nucleon
densities are used to select a path length for the projectile,

3. the momentum of the struck nucleon, the type of reaction and the
four-momenta of the reaction products are determined, and

4. the exciton model is updated as the cascade proceeds.

5. If the Pauli exclusion principle allows and Eparticle > Ecutoff = 2 MeV,
step (2) is performed to transport the products.

After the intra-nuclear cascade, the residual excitation energy of the re-
sulting nucleus is used as input for non-equilibrium model.

31.2.3 Nuclear Model

Some of the basic features of the nuclear model are:

• the nucleons are assumed to have a Fermi gas momentum distribution.
The Fermi energy is calculated in a local density approximation i.e. the
Fermi energy is made radius-dependent with Fermi momentum pF (r) =

(3π2ρ(r)
2

)
1
3 .

• Nucleon binding energies (BE) are calculated using the mass formula.
A parameterization of the nuclear binding energy uses a combination
of the Kummel mass formula and experimental data. Also, the asymp-
totic high temperature mass formula is used if it is impossible to use
experimental data.

Initialization

The initialization phase fixes the nuclear radius and momentum according to
the Fermi gas model.

If the target is hydrogen (A = 1) a direct particle-particle collision is
performed, and no nuclear modeling is required.

If 1 < A < 4, a nuclear model consisting of one layer with a radius of 8.0
fm is created.

For 4 < A < 11, the nuclear model is composed of three concentric
spheres i = {1, 2, 3} with radius

ri(αi) =

√

C2
1(1 − 1

A
) + 6.4

√

−log(αi)

.
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Here αi = {0.01, 0.3, 0.7} and C1 = 3.3836A1/3.
If A > 11, a nuclear model with three concentric spheres is also used.

The sphere radius is now defined as

ri(αi) = C2 log(
1 + e

−C1
C2

αi

− 1) + C1, (31.1)

where C2 = 1.7234.
The potential energy V for nucleon N is

VN =
p2

F

2mN
+BEN(A,Z), (31.2)

where pf is the Fermi momentum and BE is the binding energy.
The momentum distribution in each region follows the Fermi distribution

with zero temperature.

f(p) = cp2 (31.3)

where

∫ pF

0

f(p)dp = npornn (31.4)

where np and nn are the number of protons or neutrons in the region. Pf is
the momentum corresponding to the Fermi energy

Ef =
p2

F

2mN
=

~
2

2mN
(
3π2

v
)

2
3 , (31.5)

which depends on the density n/v of particles, and which is different for each
particle and each region.

Pauli Exclusion Principle

The Pauli exclusion principle forbids interactions where the products would
be in occupied states. Following the assumption of a completely degenerate
Fermi gas, the levels are filled from the lowest level. The minimum energy
allowed for the products of a collision correspond to the lowest unfilled level
of the system, which is the Fermi energy in the region. So in practice, the
Pauli exclusion principle is taken into account by accepting only secondary
nucleons which have EN > Ef .
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Cross Sections and Kinematics

Path lengths of nucleons in the nucleus are sampled according to the local
density and the free N −N cross sections. Angles after the collision are sam-
pled from experimental differential cross sections. Tabulated total reaction
cross sections are calculated by Letaw’s formulation [14, 15, 17]. For N −N
cross sections the parameterizations are based on the experimental energy
and isospin dependent data. The parameterization described in [2] is used.

For pions the intra-nuclear cross sections are provided to treat elastic
collisions and the following inelastic channels: π−p → π0n, π0p → π+n, π0n
→ π−p, and π+n → π0p. Multiple particle production is also implemented.

The pion absorption channels are π+nn → pn, π+pn → pp, π0nn → nn,
π0pn → pn, π0pp → pp, π−pn → nn , and π−pp → pn.

31.2.4 Pre-equilibrium Model

The Geant4 cascade model implements the exciton model proposed by Grif-
fin [10, 11]. In this model, nucleon states are characterized by the number
of excited particles and holes (the excitons). Intra-nuclear cascade collisions
give rise to a sequence of states characterized by increasing exciton number,
eventually leading to an equilibrated nucleus. For a practical implementation
of the exciton model we use parameters from [18], (level densities) and [13]
(matrix elements).

In the exciton model the possible selection rules for particle-hole configu-
rations in the source of the cascade are: ∆p = 0,±1 ∆h = 0,±1 ∆n = 0,±2,
where p is the number of particles, h is number of holes and n = p+ h is the
number of excitons.

The cascade pre-equilibrium model uses target excitation data and the
exciton configurations for neutrons and protons to produce non-equilibrium
evaporation. The angular distribution is isotropic in the rest frame of the
exciton system.

Parameterizations of the level density are tabulated as functions of A and
Z, and with high temperature behavior (the nuclear binding energy using the
smooth liquid high energy formula).

31.2.5 Break-up models

Fermi break-up is allowed only in some extreme cases, i.e. for light nuclei
(A < 12 and 3(A − Z) < Z < 6 ) and Eexcitation > 3Ebinding. A simple
explosion model decays the nucleus into neutrons and protons and decreases
exotic evaporation processes.
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Figure 31.1: Secondary neutrons generated by Bertini INC with exitons and
evaporation model.

The fission model is phenomenological, using potential minimization. A
binding energy paramerization is used and some features of the fission sta-
tistical model are incorporated [7].

31.2.6 Evaporation Model

A statistical theory for particle emission of the excited nucleus remaining
after the intra-nuclear cascade was originally developed by Weisskopf [21].
This model assumes complete energy equilibration before particle emission,
and re-equilibration of excitation energies between successive evaporations.
As a result the angular distribution of emitted particles is isotropic.

The Geant4 evaporation model for the cascade implementation adapts
the often-used computational method developed by Dostrowski [5, 6]. The
emission of particles is computed until the excitation energy falls below some
specific cutoff. If a light nucleus is highly excited, the Fermi break-up model
is executed. Also, fission is performed if that channel is open. The main
chain of evaporation is followed until Eexcitation falls below Ecutoff = 0.1 MeV.
The evaporation model ends with an emission chain which is followed until
Eexcitation < Eγ

cutoff = 10−15 MeV.
An example of Bertini evaporation model in action is shown in Fig. 31.1.

31.3 Interfacing Bertini implementation

Typically Bertini models are used through physics lists, with ’BERT’ in their
name. User should consult these validated physics model collection to un-
derstand the inclusion mechanisms before using directly the actual Bertini
cascade interfaces:

G4CascadeInterface All the Bertini cascade submodels in integrated fash-
ion, can be used collectively through this interface using method Apply-
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Yourself. A Geant4 track (G4Track) and a nucleus (G4Nucleus) are
given as parameters.

G4ElasticCascadeInterface provides an access to elastic hadronic scat-
tering. Particle treated are the same as in case for G4CascadeInterface
but only elastic scattering is modeled.

G4PreCompoundCascadeInterface provides an interface to INUCL in-
tra nuclear cascade with exitons. Subsequent evaporation phase is not
modeled.

G4InuclEvaporation provides an interface to INUCL evaporation model.
This interface with method BreakItUp inputs an exited nuclei G4Fragment
to model evaporation phase.

31.4 Status of this document

01.12.02 created by Aatos Heikkinen, Nikita Stepanov and Hans-Peter Wellisch
14.06.05 grammar, spelling check and list of pion absorption channels cor-
rected by D.H. Wright
30.05.07 New interfaces documented Aatos Heikkinen
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Chapter 32

The Geant4 Binary Cascade

32.1 Modeling overview

The Geant4 Binary Cascade is an intranuclear cascade propagating primary
and secondary particles in a nucleus. Interactions are between a primary or
secondary particle and an individual nucleon of the nucleus, leading to the
name Binary Cascade. Cross section data are used to select collisions. Where
available, experimental cross sections are used by the simulation. Propagat-
ing of particles is the nuclear field is done by numerically solving the equa-
tion of motion. The cascade terminates when the average and maximum
energy of secondaries is below threshold. The remaining fragment is treated
by precompound and de-excitation models documented in the corresponding
chapters.

32.1.1 The transport algorithm

For the primary particle an impact parameter is chosen random in a disk
outside the nucleus perpendicular to a vector passing through the center of
the nucleus coordinate system an being parallel to the momentum direction.
Using a straight line trajectory, the distance of closest approach dmin

i to each
target nucleon i and the corresponding time-of-flight tdi is calculated. In
this calculation the momentum of the target nucleons is ignored, i.e. the
target nucleons do not move. The interaction cross section σi with target
nucleons is calculated using total inclusive cross-sections described below.
For calculation of the cross-section the momenta of the nucleons are taken
into account. The primary particle may interact with those target nucleons
where the distance of closest approach dmin

i is smaller than dmin
i <

√

σi
π

.
These candidate interactions are called collisions, and these collisions are
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stored ordered by time-of-flight tdi . In the case no collision is found, a new
impact parameter is chosen.

The primary particle is tracked the time-step given by the time to the
first collision. As long a particle is outside the nucleus, that is a radius of the
outermost nucleon plus 3fm, particles travel along straight line trajectories.
Particles entering the nucleus have their energy corrected for Coulomb effects.
Inside the nucleus particles are propagated in the scalar nuclear field. The
equation of motion in the field is solved for a given time-step using a Runge-
Kutta integration method.

At the end of the step, the primary and the nucleon interact suing the
scattering term. The resulting secondaries are checked for the Fermi exclusion
principle. If any of the two particles has a momentum below Fermi momen-
tum, the interaction is suppressed, and the original primary is tracked to
the next collision. In case interaction is allowed, the secondaries are treated
like the primary, that is, all possible collisions are calculated like above, with
the addition that these new primary particles may be short-lived and may
decay. A decay is treated like others collisions, the collision time being the
time until the decay of the particle. All secondaries are tracked until they
leave the nucleus, or the until the cascade stops.

32.1.2 The description of the target nucleus and fermi
motion

The nucleus is constructed from A nucleons and Z protons with nucleon
coordinates ri and momenta pi, with i = 1, 2, ..., A. We use a common
initialization Monte Carlo procedure, which is realized in the most of the
high energy nuclear interaction models:

• Nucleon radii ri are selected randomly in the nucleus rest frame accord-
ing to nucleon density ρ(ri). For heavy nuclei with A > 16 [2] nucleon
density is

ρ(ri) =
ρ0

1 + exp [(ri − R)/a]
(32.1)

where

ρ0 ≈
3

4πR3
(1 +

a2π2

R2
)−1. (32.2)

Here R = r0A
1/3 fm and r0 = 1.16(1 − 1.16A−2/3) fm and a ≈ 0.545

fm. For light nuclei with A < 17 nucleon density is given by a harmonic
oscillator shell model [3], e. g.

ρ(ri) = (πR2)−3/2 exp (−r2
i /R

2), (32.3)
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where R2 = 2/3 < r2 >= 0.8133A2/3 fm2. To take into account
nucleon repulsive core it is assumed that internucleon distance d > 0.8
fm;

• The nucleus is assumed to be isotropic, i.e. we place each nucleon using
a random direction and the previously determined radius ri.

• The initial momenta of the nucleons pi are randomly choosen between
0 and pmax

F (r), where the maximal momenta of nucleons (in the local
Thomas-Fermi approximation [4]) depends from the proton or neutron
density ρ according to

pmax
F (r) = ~c(3π2ρ(r))1/3 (32.4)

• To obtain momentum components, it is assumed that nucleons are
distributed isotropic in momentum space; i.e. the momentum direction
is chosen at random.

• The nucleus must be centered in momentum space around 0, i. e. the
nucleus must be at rest, i. e.

∑

i pi = 0; To achieve this, we choose
one nucleon to compensate the sum the remaining nucleon momenta
prest =

∑i=A−1
i=1 . If this sum is larger than maximum momentum

pmax
F (r), we change the direction of the momentum of a few nucleons.

If this does not lead to a possible momentum value, than we repeat the
procedure with a different nucleon having a larger maximum momen-
tum pmax

F (r). In the rare case this fails as well, we choose new momenta
for all nucleons.

This procedure gives special for hydrogen 1H, where the proton has
momentum p = 0, and for deuterium 2H, where the momenta of proton
and neutron are equal, and in opposite direction.

• We compute energy per nucleon e = E/A = mN + B(A,Z)/A, where
mN is nucleon mass and the nucleus binding energy B(A,Z) is given
by the tabulation of [5]: and find the effective mass of each nucleon
meff

i =
√

(E/A)2 − p2′
i .

32.1.3 Optical and phenomenological potentials

The effect of collective nuclear elastic interaction upon primary and sec-
ondary particles is approximated by a nuclear potential.
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For projectile protons and neutrons this scalar potential is given by the
local Fermi momentum pF (r)

V (r) =
p2

F (r)

2m
(32.5)

where m is the mass of the neutron mn or the mass of proton mp.
For pions the potential is given by the lowest order optical potential [6]

V (r) =
−2π(~c)2A

mπ
(1 +

mπ

M
)b0ρ(r) (32.6)

where A is the nuclear mass number, mπ, M are the pion and nucleon mass,
mπ is the reduced pion mass mπ = (mπmN)/(mπ +mN ), with mN is the mass
of the nucleus, and ρ(r) is the nucleon density distribution. The parameter
b0 is the effective s−wave scattering length and is obtained from analysis to
pion atomic data to be about −0.042fm.

32.1.4 Pauli blocking simulation

The cross sections used in this model are cross sections for free particles.
In the nucleus these cross sections are reduced to effective cross sections by
Pauli-blocking due to Fermi statistics.

For nucleons created by a collision, ie. an inelastic scattering or from
decay, we check that all secondary nucleons occupy a state allowed by Fermi
statistics. We assume that the nucleus in its ground state and all states
below Fermi energy are occupied. All secondary nucleons therefore must
have a momentum pi above local Fermi momentum pF (r), i.e.

pi > pmax
F (r). (32.7)

If any of the nucleons of the collision has a momentum below the local
Fermi momentum, then the collision is Pauli blocked. The reaction products
are discarded, and the original particles continue the cascade.

32.1.5 The scattering term

The basis of the description of the reactive part of the scattering amplitude
are two particle binary collisions (hence binary cascade), resonance produc-
tion, and decay. Based on the cross-section described later in this paper,
collisions will occur when the transverse distance dt of any projectile target
pair becomes smaller than the black disk radium corresponding to the total
cross-section σt

σt

π
> d2

t
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In case of a collision, all particles will be propagated to the estimated time
of the collision, i.e. the time of closest approach, and the collision final state
is produced.

32.1.6 Total inclusive cross-sections

Experimental data are used in the calculation of the total, inelastic and
elastic cross-section wherever available.

hadron-nucleon scattering

For the case of proton-proton(pp) and proton-neutron(pn) collisions, as well
as π= and π− nucleon collisions, experimental data are readily available as
collected by the Particle Data Group (PDG) for both elastic and inelastic
collisions. We use a tabulation based on a sub-set of these data for

√
S

below 3 GeV. For higher energies, parametrizations from the CERN-HERA
collection are included.

32.1.7 Channel cross-sections

A large fraction of the cross-section in individual channels involving meson
nucleon scattering can be modeled as resonance excitation in the s-channel.
This kind of interactions show a resonance structure in the energy depen-
dency of the cross-section, and can be modeled using the Breit-Wigner func-
tion

σres(
√
s) =

∑

FS

2J + 1

(2S1 + 1)(2S2 + 1)

π

k2

ΓISΓFS

(
√
s−MR)2 + Γ/4

,

Where S1 and S2 are the spins of the two fusing particles, J is the
spin of the resonance,

√

(s) the energy in the center of mass system, k the
momentum of the fusing particles in the center of mass system, ΓIS and Γ)FS
the partial width of the resonance for the initial and final state respectively.
MR is the nominal mass of the resonance.

The initial states included in the model are pion and kaon nucleon scatter-
ing. The product resonances taken into account are the Delta resonances with
masses 1232, 1600, 1620, 1700, 1900, 1905, 1910, 1920, 1930, and 1950 MeV,
the excited nucleons with masses of 1440, 1520, 1535, 1650, 1675, 1680, 1700,
1710, 1720, 1900, 1990, 2090, 2190, 2220, and 2250 MeV, the Lambda, and
its excited states at 1520, 1600, 1670, 1690, 1800, 1810, 1820, 1830, 1890,
2100, and 2110 MeV, and the Sigma and its excited states at 1660, 1670,
1750, 1775, 1915, 1940, and 2030 MeV.
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32.1.8 Mass dependent resonance width and partial

width

During the cascading, the resonances produced are assigned reall masses,
with values distributed according to the production cross-section described
above. The concrete (rather than nominal) masses of these resonances may
be small compared to the PDG value, and this implies that some channels
may not be open for decay. In general it means, that the partial and total
width will depend on the concrete mass of the resonance. We are using the
UrQMD[13][14] approach for calculating these actual width,

ΓR→12(M) = (1 + r)
ΓR→12(MR)

p(MR)(2l+1)

MR

M

p(M)(2l+1)

1 + r(p(M)/p(MR))2l
. (32.8)

Here MR is the nominal mass of the resonance, M the actual mass, p is
the momentum in the center of mass system of the particles, L the angular
momentum of the final state, and r=0.2.

32.1.9 Resonance production cross-section in the t-
channel

In resonance production in the t-channel, single and double resonance exci-
tation in nucleon-nucleon collisions are taken into account. The resonance
production cross-sections are as much as possible based on parametrizations
of experimental data[15] for proton proton scattering. The basic formula
used is motivated from the form of the exclusive production cross-section of
the ∆1232 in proton proton collisions:

σAB = 2αABβAB

√
s−√

s0

(
√
s−√

s0)2 + β2
AB

(√
s0 + βAB√

s

)γAB

The parameters of the description for the various channels are given in
table32.1. For all other channels, the parametrizations were derived from
these by adjusting the threshold behavior.

The reminder of the cross-section are derived from these, applying de-
tailed balance. Iso-spin invariance is assumed. The formalism used to apply
detailed balance is

σ(cd→ ab) =
∑

J,M

〈jcmcjdmd ‖ JM〉2

〈jamajbmb ‖ JM〉2
(2Sa + 1)(2Sb + 1)

(2Sc + 1)(2Sd + 1)

〈p2
ab〉

〈p2
cd〉
σ(ab → cd)

(32.9)
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Reaction α β γ

pp → p∆1232 25 mbarn 0.4 GeV 3
pp → ∆1232∆1232 1.5 mbarn 1 GeV 1

pp → pp∗ 0.55 mbarn 1 GeV 1
pp → p∆∗ 0.4 mbarn 1 GeV 1

pp → ∆1232∆
∗ 0.35 mbarn 1 GeV 1

pp → ∆1232N
∗ 0.55 mbarn 1 GeV 1

Table 32.1: Values of the parameters of the cross-section formula for the
individual channels.

32.1.10 Nucleon Nucleon elastic collisions

Angular distributions for elastic scattering of nucleons are taken as closely as
possible from experimental data, i.e. from the result of phase-shift analysis.
They are derived from differential cross sections obtained from the SAID
database, R. Arndt, 1998.

Final states are derived by sampling from tables of the cumulative distri-
bution function of the centre-of-mass scattering angle, tabulated for a discrete
set of lab kinetic energies from 10 MeV to 1200 MeV. The CDF’s are tabu-
lated at 1 degree intervals and sampling is done using bi-linear interpolation
in energy and CDF values. Coulomb effects are taken into consideration for
pp scattering.

32.1.11 Generation of transverse momentum

Angular distributions for final states other than nucleon elastic scattering
are calculated analytically, derived from the collision term of the in-medium
relativistic Boltzmann-Uehling-Uhlenbeck equation, absed on the nucleon nu-
cleon elastic scattering cross-sections:

σNN→NN(s, t) =
1

(2π)2s
(D(s, t) + E(s, t) + (invertedt, u))

Here s, t, u are the Mandelstamm variables, D(s, t) is the direct term,
and E(s, t) is the exchange term, with

D(s, t) =
(gσNN )4(t−4m∗2)2

2(t−m2
σ)2

+
(gωNN )4(2s2+2st+t2−8m∗2s+8m∗4)

(t−m2
ω)2

+

24(gπNN )4m∗2t2

(t−m2
π)2

− 4(gσNNgωNN )2(2s+t−4m∗2)m∗2

(t−m2
σ)(t−m2

ω)
,
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and

E(s, t) =
(gσNN )4(t(t+s)+4m∗2(s−t))

8(t−m2
σ)(u−m2

σ)
+

(gωNN )4(s−2m∗2)(s−6m∗2))

2(t−m2
ω)(u−m2

ω)
−

6(gπNN )4(4m∗2−s−t)m∗4t

(t−m2
π)(u=mpi2)

+
3(gσNN gπNN )2m∗2(4m∗2−s−t)(4m∗2−t)

(t−m2
σ)(u−m2

π)
+

3(gσNNgπNN )2t(t+s)m∗2

2(t−m2
π)(u−m2

σ)
+

(gσNN gωNN )2t2−4m∗2s−10m∗2t+24m∗4

4(t−m2
σ)(u−m2

ω)
+

(gσNN gωNN )2(t+s)2−2m∗2s+2m∗2t

4(t−m2
ω)(u−m2

σ)
+

3(gωNN gπNN )2(t+s−4m∗2)(t+s−2m∗2)

(t−m2
ω)(u−m2

π)
+

3(gωNNgπNN )2m∗2(t2−2m∗2t)

(t−m2
π)(u−m2

ω)
. (32.10)

(32.11)

Here, in this first release, the in-medium mass was set to the free mass, and
the nucleon nucleon coupling constants used were 1.434 for the π, 7.54 for the
ω, and 6.9 for the σ. This formula was used for elementary hadron-nucleon
differential cross-sections by scaling teh center of mass energy squared ac-
cordingly.

Finite size effects were taken into account at the meson nucleon vertex,
using a phenomenological form factor (cut-off) at each vertex.

32.1.12 Decay

In the simulation of decay of strong resonances, we use the nominal decay
branching ratios from the particle data book. The stochastic mass of a
individual resonance created is sampled at creation time from the Breit-
Wigner form, under the mass constraints posed by center of mass energy of
the scattering, and the mass in the lightest decay channel. The decay width
from the particle data book are then adjusted according to equation 32.8, to
take the stochastic mass value into account.

All decay channels with nominal branching ratios greater than 1% are
simulated.

32.1.13 The escaping particle and coherent effects

When a nucleon other than the incident particle leaves the nucleus, the
ground state of the nucleus changes. The energy of the outgoing particle
cannot be such that the total mass of the new nucleus would be below its
ground state mass. To avoid this, we reduce the energy of an outgoing nu-
cleons by the mass-difference of old and new nucleus.

Furthermore, the momentum of the final exited nucleus derived from
energy momentum balance may be such that its mass is below its ground
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state mass. In this case, we arbitrarily scale the momenta of all outgoing
particles by a factor derived from the mass of the nucleus and the mass of
the system of outgoing particles.

32.1.14 Light ion reactions

In simulating light ion reactions, the initial state of the cascade is prepared
in the form of two nuclei, as described in the above section on the nuclear
model.

The lighter of the collision partners is selected to be the projectile. The
nucleons in the projectile are then entered, with position and momenta, into
the initial state of the cascade. Note that before the first scattering of an
individual nucleon, a projectile nucleon’s Fermi-momentum is not taken into
account in the tracking inside the target nucleus. The nucleon distribution
inside the projectile nucleus is taken to be a representative distribution of
its nucleons in configuration space, rather than an initial state in the sense
of QMD. The Fermi momentum and the local field are taken into account
in the calculation of the collision probabilities and final states of the binary
collisions.

32.1.15 Transition to pre-compound modeling

Eventually, the cascade assumptions will break down at low energies, and the
state of affairs has to be treated by means of evaporation and pre-equilibrium
decay. This transition is not at present studied in depth, and an interesting
approach which uses the tracking time, as in the Liege cascade code, remains
to be studied in our context.

For this first release, the following algorithm is used to determine when
cascading is stopped, and pre-equilibrium decay is called: As long as there
are still particles above the kinetic energy threshold (75 MeV), cascading will
continue. Otherwise, when the mean kinetic energy of the participants has
dropped below a second threshold (15 MeV), the cascading is stopped.

The residual participants, and the nucleus in its current state are then
used to define the initial state, i.e. excitation energy, number of excitons,
number of holes, and momentum of the exciton system, for pre-equilibrium
decay.

In the case of light ion reactions, the projectile excitation is determined
from the binary collision participants (P ) using the statistical approach to-
wards excitation energy calculation in an adiabatic abrasion process, as de-
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scribed in [12]:

Eex =
∑

P

(EP
fermi − EP )

Given this excitation energy, the projectile fragment is then treated by
the evaporation models described previously.

32.1.16 Calculation of excitation energies and residu-

als

At the end of the cascade, we form a fragment for further treatment in
precompound and nuclear de-excitation models ([16]).

These models need information about the nuclear fragment created by
the cascade. The fragment is characterized by the number of nucleons in the
fragment, the charge of the fragment, the number of holes, the number of all
excitons, and the number of charged excitons, and the four momentum of
the fragment.

The number of holes is given by the difference of the number of nucleons
in the original nucleus and the number of non-excited nucleons left in the
fragment. An exciton is a nucleon captured in the fragment at the end of the
cascade.

The momentum of the fragment calculated by the difference between the
momentum of the primary and the outgoing secondary particles must be
split in two components. The first is the momentum acquired by coherent
elastic effects, and the second is the momentum of the excitons in the nu-
cleus rest frame. Only the later part is passed to the de-excitation models.
Secondaries arising from de-excitation models, including the final nucleus,
are transformed back the frame of the moving fragment.

32.2 Comparison with experiments

We add here a set of preliminary results produced with this code, focusing on
neutron and pion production. Given that we are still in the process of writing
up the paper, we apologize for the at release time still less then publication
quality plots.
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Figure 32.1: Double differential cross-section for neutrons produced in pro-
ton scattering off Aluminum. Proton incident energy was 113 MeV.
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Figure 32.2: Double differential cross-section for neutrons produced in pro-
ton scattering off Aluminum. Proton incident energy was 256 MeV. The
points are data, the histogram is Binary Cascade prediction.

503



Ekin (MeV)

cr
os

s 
se

ct
io

n 
(m

b/
sr

.M
eV

)

597 MeV  p + Al - 30 deg

- 60 deg

- 150 deg

10
-2

10
-1

1

10

1 10 10
2

Figure 32.3: Double differential cross-section for neutrons produced in pro-
ton scattering off Aluminum. Proton incident energy was 597 MeV. The
points are data, the histogram is Binary Cascade prediction.
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Figure 32.4: Double differential cross-section for neutrons produced in pro-
ton scattering off Aluminum. Proton incident energy was 800 MeV. The
points are data, the histogram is Binary Cascade prediction.
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Figure 32.5: Double differential cross-section for neutrons produced in pro-
ton scattering off Iron. Proton incident energy was 113 MeV. The points are
data, the histogram is Binary Cascade prediction.
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Figure 32.6: Double differential cross-section for neutrons produced in pro-
ton scattering off Iron. Proton incident energy was 256 MeV. The points are
data, the histogram is Binary Cascade prediction.
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Figure 32.7: Double differential cross-section for neutrons produced in pro-
ton scattering off Iron. Proton incident energy was 597 MeV. The points are
data, the histogram is Binary Cascade prediction.
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Figure 32.8: Double differential cross-section for neutrons produced in pro-
ton scattering off Iron. Proton incident energy was 800 MeV. The points are
data, the histogram is Binary Cascade prediction.
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Figure 32.9: Double differential cross-section for neutrons produced in pro-
ton scattering off Lead. Proton incident energy was 113 MeV. The points
are data, the histogram is Binary Cascade prediction.
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Figure 32.10: Double differential cross-section for neutrons produced in
proton scattering off Lead. Proton incident energy was 256 MeV. The points
are data, the histogram is Binary Cascade prediction.
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Figure 32.11: Double differential cross-section for neutrons produced in
proton scattering off Lead. Proton incident energy was 597 MeV. The points
are data, the histogram is Binary Cascade prediction.
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Figure 32.12: Double differential cross-section for neutrons produced in
proton scattering off Lead. Proton incident energy was 800 MeV. The points
are data, the histogram is Binary Cascade prediction.
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Figure 32.13: Double differential cross-section for pions produced at 45◦ in
proton scattering off various materials. Proton incident energy was 597 MeV
in each case. The points are data, the histogram is Binary Cascade predic-
tion.
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Chapter 33

Abrasion-ablation Model

33.1 Introduction

The abrasion model is a simplified macroscopic model for nuclear-nuclear
interactions based largely on geometric arguments rather than detailed con-
sideration of nucleon-nucleon collisions. As such the speed of the simulation
is found to be faster than models such as G4BinaryCascade, but at the cost
of accuracy. The version of the model implemented is interpreted from the
so-called abrasion-ablation model described by Wilson et al [1],[2] together
with an algorithm from Cucinotta to approximate the secondary nucleon en-
ergy spectrum [3]. By default, instead of performing an ablation process to
simulate the de-excitation of the nuclear pre-fragments, the Geant4 imple-
mentation of the abrasion model makes use of existing and more detailed nu-
clear de-excitation models within Geant4 (G4Evaporation, G4FermiBreakup,
G4StatMF) to perform this function (see section 33.5). However, in some
cases cross sections for the production of fragments with large ∆A from the
pre-abrasion nucleus are more accurately determined using a Geant4 imple-
mentation of the ablation model (see section 33.6).
The abrasion interaction is the initial fast process in which the overlap region
between the projectile and target nuclei is sheered-off (see figure 33.1) The
spectator nucleons in the projectile are assumed to undergo little change in
momentum, and likewise for the spectators in the target nucleus. Some of
the nucleons in the overlap region do suffer a change in momentum, and
are assumed to be part of the original nucleus which then undergoes de-
excitation.
Less central impacts give rise to an overlap region in which the nucleons can
suffer significant momentum change, and zones in the projectile and target
outside of the overlap where the nucleons are considered as spectators to the
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initial energetic interaction.
The initial description of the interaction must, however, take into consid-
eration changes in the direction of the projectile and target nuclei due to
Coulomb effects, which can then modify the distance of closest approach
compared with the initial impact parameter. Such effects can be important
for low-energy collisions.

33.2 Initial nuclear dynamics and impact pa-

rameter

For low-energy collisions, we must consider the deflection of the nuclei as a
result of the Coulomb force (see figure 33.2). Since the dynamics are non-
relativistic, the motion is governed by the conservation of energy equation:

Etot =
1

2
µṙ2 +

l2

2µr2
+
ZPZT e

2

r
(33.1)

where:
Etot = total energy in the centre of mass frame;
r,ṙ = distance between nuclei, and rate of change of distance;
l = angular momentum;
µ = reduced mass of system i.e. m1m2/(m1 +m2);
e = electric charge (units dependent upon the units for Etot and r);
ZP , ZT = charge numbers for the projectile and target nuclei.

The angular momentum is based on the impact parameter between the nuclei
when their separation is large, i.e.

Etot =
1

2

l2

µb2
⇒ l2 = 2Etotµb

2 (33.2)

At the point of closest approach, ṙ=0, therefore:

Etot = Etotb2

r2 + ZPZT e2

r

r2 = b2 + ZPZT e2

Etot
r

(33.3)

Rearranging this equation results in the expression:

b2 = r(r − rm) (33.4)

where:

rm =
ZPZTe

2

Etot
(33.5)
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In the implementation of the abrasion process in Geant4, the square of the
far-field impact parameter, b, is sampled uniformly subject to the distance of
closest approach, r, being no greater than rP + rT (the sum of the projectile
and target nuclear radii).

33.3 Abrasion process

In the abrasion process, as implemented by Wilson et al [1] it is assumed
that the nuclear density for the projectile is constant up to the radius of the
projectile (rP ) and zero outside. This is also assumed to be the case for the
target nucleus. The amount of nuclear material abraded from the projectile
is given by the expression:

∆abr = FAP

[

1 − exp

(

−CT

λ

)]

(33.6)

where F is the fraction of the projectile in the interaction zone, λ is the
nuclear mean-free-path, assumed to be:

λ =
16.6

E0.26
(33.7)

E is the energy of the projectile in MeV/nucleon and CT is the chord-length
at the position in the target nucleus for which the interaction probability is
maximum. For cases where the radius of the target nucleus is greater than
that of the projectile (i.e. rT > rP ):

CT =

{

2
√

r2
T − x2 : x > 0

2
√

r2
T − r2 : x ≤ 0

(33.8)

where:

x =
r2
P + r2 − r2

T

2r
(33.9)

In the event that rP > rT then CT is:

CT =

{

2
√

r2
T − x2 : x > 0

2rT : x ≤ 0
(33.10)

where:

x =
r2
T + r2 − r2

P

2r
(33.11)

The projectile and target nuclear radii are given by the expression:
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rP ≈ 1.29
√

r2
RMS,P − 0.842

rT ≈ 1.29
√

r2
RMS,T − 0.842

(33.12)

The excitation energy of the nuclear fragment formed by the spectators in
the projectile is assumed to be determined by the excess surface area, given
by:

∆S = 4πr2
P

[

1 + P − (1 − F )
2/3
]

(33.13)

where the functions P and F are given in section 33.7. Wilson et al equate
this surface area to the excitation to:

ES = 0.95∆S (33.14)

if the collision is peripheral and there is no significant distortion of the nu-
cleus, or

ES = 0.95 {1 + 5F + ΩF 3}∆S

Ω =







0 : AP > 16
1500 : AP < 12

1500 − 320 (AP − 12) : 12 ≤ AP ≤ 16

(33.15)

if the impact separation is such that r << rP+rT . ES is in MeV provided
∆S is in fm2.
For the abraded region, Wilson et al assume that fragments with a nucleon
number of five are unbounded, 90% of fragments with a nucleon number of
eight are unbound, and 50% of fragments with a nucleon number of nine
are unbound. This was not implemented within the Geant4 version of the
abrasion model, and disintegration of the pre-fragment was only simulated by
the subsequent de-excitation physics models in the G4DeexcitationHandler
(evaporation, etc. or G4WilsonAblationModel) since the yields of lighter
fragments were already underestimated compared with experiment.
In addition to energy as a result of the distortion of the fragment, some energy
is assumed to be gained from transfer of kinetic energy across the boundaries
of the nuclei. This is approximated to the average energy transferred to a
nucleon per unit intersection pathlength (assumed to be 13 MeV/fm) and
the longest chord-length, Cl, and for half of the nucleon-nucleon collisions it
is assumed that the excitation energy is:

E∗
X =

{

13 ·
[

1 + Ct−1.5
3

]

Cl : Ct > 1.5fm
13 · Cl : Ct ≤ 1.5fm

(33.16)
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where:

Cl =

{

2
√

r2
P + 2rrT − r2 − r2

T r > rT

2rP r ≤ rT
(33.17)

Ct = 2

√

r2
P − (r2

P + r2 − r2
T )

2

4r2
(33.18)

For the remaining events, the projectile energy is assumed to be unchanged.
Wilson et al assume that the energy required to remove a nucleon is 10MeV,
therefore the number of nucleons removed from the projectile by ablation is:

∆abl =
ES + EX

10
+ ∆spc (33.19)

where ∆spc is the number of loosely-bound spectators in the interaction re-
gion, given by:

∆spc = APF exp

(

−CT

λ

)

(33.20)

Wilson et al appear to assume that for half of the events the excitation
energy is transferred into one of the nuclei (projectile or target), otherwise
the energy is transferred in to the other (target or projectile respectively).
The abrasion process is assumed to occur without preference for the nucleon
type, i.e. the probability of a proton being abraded from the projectile is
proportional to the fraction of protons in the original projectile, therefore:

∆Zabr = ∆abr
ZP

AP
(33.21)

In order to calculate the charge distribution of the final fragment, Wilson et al
assume that the products of the interaction lie near to nuclear stability and
therefore can be sampled according to the Rudstam equation (see section
33.6). The other obvious condition is that the total charge must remain
unchanged.

33.4 Abraded nucleon spectrum

Cucinotta has examined different formulae to represent the secondary protons
spectrum from heavy ion collisions [3]. One of the models (which has been
implemented to define the final state of the abrasion process) represents the
momentum distribution of the secondaries as:
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ψ(p) ∝
3
∑

i=1

Ci exp

(

− p2

2p2
i

)

+ d0
γp

sinh (γp)
(33.22)

where:
ψ(p) = number of secondary protons with momentum p per unit of

momentum phase space [c3/MeV3];
p = magnitude of the proton momentum in the rest frame of the

nucleus from which the particle is projected [MeV/c];
C1, C2, C3 = 1.0, 0.03, and 0.0002;

p1, p2, p3 =
√

2
5
pF ,

√

6
5
pF , 500 [MeV/c]

pF = Momentum of nucleons in the nuclei at the Fermi surface [MeV/c]
d0 = 0.1
1
γ

= 90 [MeV/c];
G4WilsonAbrasionModel approximates the momentum distribution for the
neutrons to that of the protons, and as mentioned above, the nucleon type
sampled is proportional to the fraction of protons or neutrons in the original
nucleus.
The angular distribution of the abraded nucleons is assumed to be isotropic
in the frame of reference of the nucleus, and therefore those particles from the
projectile are Lorentz-boosted according to the initial projectile momentum.

33.5 De-excitation of the projectile and tar-

get nuclear pre-fragments by standard

Geant4 de-excitation physics

Unless specified otherwise, G4WilsonAbrasionModel will instantiate the fol-
lowing de-excitation models to treat subsequent particle emission of the ex-
cited nuclear pre-fragments (from both the projectile and the target):

1 G4Evaporation, which will perform nuclear evaporation of (α-particles,
3He, 3H, 2H, protons and neutrons, in competition with photo-evaporation
and nuclear fission (if the nucleus has sufficiently high A).

2 G4FermiBreakUp, for nuclei with A ≤ 12 and Z ≤ 6.

3 G4StatMF, for multi-fragmentation of the nucleus (minimum energy for
this process set to 5 MeV).

As an alternative to using this de-excitation scheme, the user may provide
to the G4WilsonAbrasionModel a pointer to her own de-excitation handler,
or invoke instantiation of the ablation model (G4WilsonAblationModel).
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33.6 De-excitation of the projectile and tar-

get nuclear pre-fragments by nuclear ab-

lation

A nuclear ablation model, based largely on the description provided by Wil-
son et al [1], has been developed to provide a better approximation for the
final nuclear fragment from an abrasion interaction. The algorithm imple-
mented in G4WilsonAblationModel uses the same approach for selecting the
final-state nucleus as NUCFRG2 and determining the particles evaporated
from the pre-fragment in order to achieve that state. However, use is also
made of classes in Geant4’s evaporation physics to determine the energies of
the nuclear fragments produced.
The number of nucleons ablated from the nuclear pre-fragment (whether
as nucleons or light nuclear fragments) is determined based on the average
binding energy, assumed by Wilson et al to be 10 MeV, i.e.:

Aabl =

{

Int
(

Ex
10MeV

)

: APF > Int
(

Ex
10MeV

)

APF : otherwise
(33.23)

Obviously, the nucleon number of the final fragment, AF , is then determined
by the number of remaining nucleons. The proton number of the final nuclear
fragment (ZF ) is sampled stochastically using the Rudstam equation:

σ(AF , ZF ) ∝ exp

(

−R
∣

∣ZF − SAF − TA2
F

∣

∣

3/2
)

(33.24)

Here R=11.8/AF 0.45, S=0.486, and T=3.8·10−4. Once ZF and AF have been
calculated, the species of the ablated (evaporated) particles are determined
again using Wilson’s algorithm. The number of α-particles is determined
first, on the basis that these have the greatest binding energy:

Nα =

{

Int
(

Zabl
2

)

: Int
(

Zabl
2

)

< Int
(

Aabl
4

)

Int
(

Aabl
4

)

: Int
(

Zabl
2

)

≥ Int
(

Aabl
4

) (33.25)

Calculation of the other ablated nuclear/nucleon species is determined in
a similar fashion in order of decreasing binding energy per nucleon of the
ablated fragment, and subject to conservation of charge and nucleon number.
Once the ablated particle species are determined, use is made of the Geant4
evaporation classes to sample the order in which the particles are ejected
(from G4AlphaEvaporationProbability, G4He3EvaporationProbability, G4TritonEvaporationProbabilit
G4DeuteronEvaporationProbability, G4ProtonEvaporationProbability and G4NeutronEvaporationProbabilit
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and the energies and momenta of the evaporated particle and the resid-
ual nucleus at each two-body decay (using G4AlphaEvaporationChannel,
G4He3EvaporationChannel, G4TritonEvaporationChannel, G4DeuteronEvaporationChannel,
G4ProtonEvaporationChannel and G4NeutronEvaporationChannel). If at
any stage the probability for evaporation of any of the particles selected by
the ablation process is zero, the evaporation is forced, but no significant
momentum is imparted to the particle/nucleus. Note, however, that any
particles ejected from the projectile will be Lorentz boosted depending upon
the initial energy per nucleon of the projectile.

33.7 Definition of the functions P and F used

in the abrasion model

In the first instance, the form of the functions P and F used in the abrasion
model are dependent upon the relative radii of the projectile and target and
the distance of closest approach of the nuclear centres. Four radius condtions
are treated.
rT > rP and rT − rP ≤ r ≤ rT + rP :

P = 0.125
√
µν

(

1

µ
− 2

)(

1 − β

ν

)2

−0.125

[

0.5
√
µν

(

1

µ
− 2

)

+ 1

](

1 − β

ν

)3

(33.26)

F = 0.75
√
µν

(

1 − β

ν

)2

− 0.125 [3
√
µν − 1]

(

1 − β

ν

)3

(33.27)

where:

ν =
rP

rP + rT

(33.28)

β =
r

rP + rT

(33.29)

µ =
rT

rP
(33.30)

rT > rP and r < rT − rP :

P = −1 (33.31)
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F = 1 (33.32)

rP > rT and rP − rT ≤ r ≤ rP + rT :

P = 0.125
√
µν

(

1

µ
− 2

)(

1 − β

ν

)2

(33.33)

− 0.125

{

0.5

√

ν

µ

(

1

µ
− 2

)

−
[

√

1 − µ2

ν
− 1

]

√

2 − µ

µ5

}

(

1 − β

ν

)3

F = 0.75
√
µν

(

1 − β

ν

)2

(33.34)

− 0.125









3

√

ν

µ
−

[

1 − (1 − µ2)
3/2
]

√

1 − (1 − µ)2

µ3









(

1 − β

ν

)3

rP > rT and r < rT − rP :

P =

[

√

1 − µ2

ν
− 1

]

√

1 −
(

β

ν

)2

(33.35)

F =

[

1 −
(

1 − µ2
)
3/2
]

√

1 −
(

β

ν

)2

(33.36)

33.8 Status of this document

18.06.04 created by Peter Truscott
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Figure 33.1: In the abrasion process, a fraction of the nucleons in the pro-
jectile and target nucleons interact to form a fireball region with a velocity
between that of the projectile and the target. The remaining spectator nu-
cleons in the projectile and target are not initially affected (although they
do suffer change as a result of longer-term de-excitation).
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Figure 33.2: Illustration clarifying impact parameter in the far-field (b) and
actual impact parameter (r).
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Chapter 34

Electromagnetic Dissociation
Model

34.1 The Model

The relative motion of a projectile nucleus travelling at relativistic speeds
with respect to another nucleus can give rise to an increasingly hard spec-
trum of virtual photons. The excitation energy associated with this en-
ergy exchange can result in the liberation of nucleons or heavier nuclei (i.e.
deuterons, α-particles, etc.). The contribution of this source to the total
inelastic cross section can be important, especially where the proton number
of the nucleus is large. The electromagnetic dissociation (ED) model is im-
plemented in the classes G4EMDissociation, G4EMDissociationCrossSection
and G4EMDissociationSpectrum, with the theory taken from Wilson et al
[1], and Bertulani and Baur [2].
The number of virtual photons N(Eγ , b) per unit area and energy interval
experienced by the projectile due to the dipole field of the target is given by
the expression [2]:

N (Eγ, b) =
αZ2

T

π2β2b2Eγ

{

x2k2
1(x) +

(

x2

γ2

)

k2
0(x)

}

(34.1)

where x is a dimensionless quantity defined as:

x =
bEγ

γβh̄c
(34.2)

and:
α = fine structure constant
β = ratio of the velocity of the projectile in the laboratory frame to

the velocity of light
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γ = Lorentz factor for the projectile in the laboratory frame
b = impact parameter
c = speed of light
h̄ = quantum constant
Eγ = energy of virtual photon
k0 and k1 = zeroth and first order modified Bessel functions of the

second kind
ZT = atomic number of the target nucleus

Integrating Eq. 34.1 over the impact parameter from bmin to ∞ produces
the virtual photon spectrum for the dipole field of:

NE1 (Eγ) =
2αZ2

T

πβ2Eγ

{

ξk0(ξ)k1(ξ) −
ξ2β2

2

(

k2
1(ξ) − k2

0(ξ)
)

}

(34.3)

where, according to the algorithm implemented by Wilson et al in NUCFRG2
[1]:

ξ = Eγbmin

γβh̄c

bmin = (1 + xd)bc + πα0

2γ

α0 = ZPZT e2

µβ2c2

bc = 1.34

[

A
1/3
P + A

1/3
T − 0.75

(

A
−1/3
P + A

−1/3
T

)]

(34.4)

and µ is the reduced mass of the projectile/target system, xd = 0.25, and AP

and AT are the projectile and target nucleon numbers. For the last equation,
the units of bc are fm. Wilson et al state that there is an equivalent virtual
photon spectrum as a result of the quadrupole field:

NE2 (Eγ) =
2αZ2

T

πβ4Eγ

{

2
(

1 − β2
)

k2
1(ξ) + ξ

(

2 − β2
)2
k0(ξ)k1(ξ) −

ξ2β4

2

(

k2
1(ξ) − k2

0(ξ)
)

}

(34.5)
The cross section for the interaction of the dipole and quadrupole fields is
given by:

σED =

∫

NE1 (Eγ)σE1 (Eγ) dEγ +

∫

NE2 (Eγ) σE2 (Eγ) dEγ (34.6)
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Wilson et al assume that σE1(Eγ) and σE2(Eγ) are sharply peaked at the
giant dipole and quadrupole resonance energies:

EGDR = h̄c
[

m∗c2R2
0

8J

(

1 + u− 1+ε+3u
1+ε+u

ε
)

]− 1
2

EGQR = 63

A
1
/3
P

(34.7)

so that the terms for NE1 and NE2 can be taken out of the integrals in Eq.
34.6 and evaluated at the resonances.
In Eq. 34.7:

u = 3J
Q′A

−1/3
P

R0 = r0A
1/3
P

(34.8)

ǫ = 0.0768, Q′ = 17MeV, J = 36.8MeV, r0 = 1.18fm, and m∗ is 7/10 of
the nucleon mass (taken as 938.95 MeV/c2). (The dipole and quadrupole
energies are expressed in units of MeV.)
The photonuclear cross sections for the dipole and quadrupole resonances are
assumed to be given by:

∫

σE1 (Eγ) dEγ = 60
NPZP

AP
(34.9)

in units of MeV-mb (NP being the number of neutrons in the projectile) and:

∫

σE2 (Eγ)
dEγ

E2
γ

= 0.22fZPA
2/3
P (34.10)

in units of µb/MeV. In the latter expression, f is given by:

f =







0.9 AP > 100
0.6 40 < AP ≤ 100
0.3 40 ≤ AP

(34.11)

The total cross section for electromagnetic dissociation is therefore given by
Eq. 34.6 with the virtual photon spectra for the dipole and quadrupole fields
calculated at the resonances:
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σED = NE1 (EGDR)

∫

σE1 (Eγ) dEγ +NE2 (EGQR)E2
GQR

∫

σE2 (Eγ)

E2
γ

dEγ

(34.12)
where the resonance energies are given by Eq. 34.7 and the integrals for the
photonuclear cross sections given by Eq. 34.9 and Eq. 34.10.
The selection of proton or neutron emission is made according to the following
prescription from Wilson et al.

σED,p = σED ×



















0.5 ZP < 6
0.6 6 ≤ ZP ≤ 8
0.7 8 < ZP < 14

min
[

ZP
AP
, 1.95 exp(−0.075ZP )

]

ZP ≥ 14



















σED,n = σED − σED,p

(34.13)
Note that this implementation of ED interactions only treats the ejection

of single nucleons from the nucleus, and currently does not allow emission of
other light nuclear fragments.

34.2 Status of this document

19.06.04 created by Peter Truscott
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Chapter 35

Precompound model.

35.1 Reaction initial state.

The GEANT4 precompound model is considered as an extension of the
hadron kinetic model. It gives a possibility to extend the low energy range
of the hadron kinetic model for nucleon-nucleus inelastic collision and it pro-
vides a ”smooth” transition from kinetic stage of reaction described by the
hadron kinetic model to the equilibrium stage of reaction described by the
equilibrium deexcitation models.

The initial information for calculation of pre-compound nuclear stage
consists from the atomic mass number A, charge Z of residual nucleus, its
four momentum P0, excitation energy U and number of excitons n equals
the sum of number of particles p (from them pZ are charged) and number of
holes h.

At the preequilibrium stage of reaction, we following the [1] approach,
take into account all possible nuclear transition the number of excitons n
with ∆n = +2,−2, 0 [1], which defined by transition probabilities. Only
emmision of neutrons, protons, deutrons, thritium and helium nuclei are
taken into account.

35.2 Simulation of pre-compound reaction

The precompound stage of nuclear reaction is considered until nuclear
system is not an equilibrium state. Further emission of nuclear fragments or
photons from excited nucleus is simulated using an equilibrium model.
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35.2.1 Statistical equilibrium condition

In the state of statistical equilibrium, which is characterized by an eqilib-
rium number of excitons neq, all three type of transitions are equiprobable.
Thus neq is fixed by ω+2(neq, U) = ω−2(neq, U). From this condition we can
get

neq =
√

2gU. (35.1)

35.2.2 Level density of excited (n-exciton) states

To obtain Eq. (35.1) it was assumed an equidistant scheme of single-
particle levels with the density g ≈ 0.595aA, where a is the level density
parameter, when we have the level density of the n-exciton state as

ρn(U) =
g(gU)n−1

p!h!(n− 1)!
. (35.2)

35.2.3 Transition probabilities

The partial transition probabilities changing the exciton number by ∆n is
determined by the squared matrix element averaged over allowed transitions
< |M |2 > and the density of final states ρ∆n(n, U), which are really accessible
in this transition. It can be defined as following:

ω∆n(n, U) =
2π

h
< |M |2 > ρ∆n(n, U). (35.3)

The density of final states ρ∆n(n, U) were derived in paper [2] using the Eq.
(35.2) for the level density of the n-exciton state and later corrected for the
Pauli principle and indistinguishability of identical excitons in paper [3]:

ρ∆n=+2(n, U) =
1

2
g
[gU − F (p+ 1, h+ 1)]2

n + 1
[
gU − F (p+ 1, h+ 1)

gU − F (p, h)
]n−1,

(35.4)

ρ∆n=0(n, U) =
1

2
g
[gU − F (p, h)]

n
[p(p− 1) + 4ph+ h(h− 1)] (35.5)

and

ρ∆n=−2(n, U) =
1

2
gph(n− 2), (35.6)

where F (p, h) = (p2 + h2 + p− h)/4− h/2 and it was taken to be equal zero.
To avoid calculation of the averaged squared matrix element < |M |2 > it
was assumed [1] that transition probability ω∆n=+2(n, U) is the same as the
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probability for quasi-free scattering of a nucleon above the Fermi level on a
nucleon of the target nucleus, i. e.

ω∆n=+2(n, U) =
< σ(vrel)vrel >

Vint
. (35.7)

In Eq. (35.7) the interaction volume is estimated as Vint = 4
3
π(2rc + λ/2π)3,

with the De Broglie wave length λ/2π corresponding to the relative velocity
< vrel >=

√

2Trel/m, where m is nucleon mass and rc = 0.6 fm.
The averaging in < σ(vrel)vrel > is further simplified by

< σ(vrel)vrel >=< σ(vrel) >< vrel > . (35.8)

For σ(vrel) we take approximation:

σ(vrel) = 0.5[σpp(vrel) + σpn(vrel]P (TF/Trel), (35.9)

where factor P (TF/Trel) was introduced to take into account the Pauli prin-
ciple. It is given by

P (TF/Trel) = 1 − 7

5

TF

Trel
(35.10)

for TF
Trel

≤ 0.5 and

P (TF/Trel) = 1 − 7

5

TF

Trel

+
2

5

TF

Trel

(2 − Trel

TF

)5/2 (35.11)

for TF
Trel

> 0.5.

The free-particle proton-proton σpp(vrel) and proton-neutron σpn(vrel) in-
teraction cross sections are estimated using the equations [4]:

σpp(vrel) =
10.63

v2
rel

− 29.93

vrel
+ 42.9 (35.12)

and

σpn(vrel) =
34.10

v2
rel

− 82.2

vrel
+ 82.2, (35.13)

where cross sections are given in mbarn.
The mean relative kinetic energy Trel is needed to calculate < vrel >

and the factor P (TF/Trel) was computed as Trel = Tp + Tn, where mean
kinetic energies of projectile nucleons Tp = TF + U/n and target nucleons
TN = 3TF/5, respecively.
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Combining Eqs. (35.3) - (35.7) and assuming that < |M |2 > are the same
for transitions with ∆n = 0 and ∆n = ±2 we obtain for another transition
probabilities:

ω∆n=0(n, U) =

= <σ(vrel)vrel>
Vint

n+1
n

[ gU−F (p,h)
gU−F (p+1,h+1)

]n+1 p(p−1)+4ph+h(h−1)
gU−F (p,h)

(35.14)

and
ω∆n=−2(n, U) =

= <σ(vrel)vrel>
Vint

[ gU−F (p,h)
gU−F (p+1,h+1)

]n+1 ph(n+1)(n−2)
[gU−F (p,h)]2

.
(35.15)

35.2.4 Emission probabilities for nucleons

Emission process probability has been choosen similar as in the classical
equilibrium Weisskopf-Ewing model [5]. Probability to emit nucleon b in the
energy interval (Tb, Tb + dTb) is given

Wb(n, U, Tb) = σb(Tb)
(2sb + 1)µb

π2h3
Rb(p, h)

ρn−b(E
∗)

ρn(U)
Tb, (35.16)

where σb(Tb) is the inverse (absorption of nucleon b) reaction cross section,
sb and mb are nucleon spin and reduced mass, the factor Rb(p, h) takes into
account the condition for the exciton to be a proton or neutron, ρn−b(E

∗)
and ρn(U) are level densities of nucleus after and before nucleon emission are
defined in the evaporation model, respectively and E∗ = U − Qb − Tb is the
excitation energy of nucleus after fragment emission.

35.2.5 Emission probabilities for complex fragments

It was assumed [1] that nucleons inside excited nucleus are able to ”con-
dense” forming complex fragment. The ”condensation” probability to create
fragment consisting from Nb nucleons inside nucleus with A nucleons is given
by

γNb = N3
b (Vb/V )Nb−1 = N3

b (Nb/A)Nb−1, (35.17)

where Vb and V are fragment b and nucleus volumes, respectively. The last
equation was estimated [1] as the overlap integral of (constant inside a vol-
ume) wave function of independent nucleons with that of the fragment.

During the prequilibrium stage a ”condense” fragment can be emitted.
The probability to emit a fragment can be written as [1]

Wb(n, U, Tb) = γNbRb(p, h)
ρ(Nb, 0, Tb +Qb)

gb(Tb)
σb(Tb)

(2sb + 1)µb

π2h3

ρn−b(E
∗)

ρn(U)
Tb,

(35.18)
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where

gb(Tb) =
Vb(2sb + 1)(2µb)

3/2

4π2h3
(Tb +Qb)

1/2 (35.19)

is the single-particle density for complex fragment b, which is obtained by
assuming that complex fragment moves inside volume Vb in the uniform po-
tential well whose depth is equal to be Qb, and the factor Rb(p, h) garantees
correct isotopic composition of a fragment b.

35.2.6 The total probability

This probability is defined as

Wtot(n, U) =
∑

∆n=+2,0,−2

ω∆n(n, U) +

6
∑

b=1

Wb(n, U), (35.20)

where total emission Wb(n, U) probabilities to emit fragment b can be ob-
tained from Eqs. (35.16) and (35.18) by integration over Tb:

Wb(n, U) =

∫ U−Qb

Vb

Wb(n, U, Tb)dTb. (35.21)

35.2.7 Calculation of kinetic energies for emitted par-
ticle

The equations (35.16) and (35.18) are used to sample kinetic energies of
emitted fragment.

35.2.8 Parameters of residual nucleus.

After fragment emission we update parameter of decaying nucleus:

Af = A− Ab;Zf = Z − Zb;Pf = P0 − pb;

E∗
f =

√

E2
f − ~P 2

f −M(Af , Zf).
(35.22)

Here pb is the evaporated fragment four momentum.

35.3 Status of this document

00.00.00 created by Vicente Lara
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Chapter 36

Evaporation Model

36.1 Introduction.

At the end of the pre-equilibrium stage, or a thermalizing process, the
residual nucleus is supposed to be left in an equilibrium state, in which the
excitation energy E∗ is shared by a large number of nucleons. Such an equili-
brated compound nucleus is characterized by its mass, charge and excitation
energy with no further memory of the steps which led to its formation. If
the excitation energy is higher than the separation energy, it can still eject
nucleons and light fragments (d, t, 3He, α). These constitute the low energy
and most abundant part of the emitted particles in the rest system of the
residual nucleus. The emission of particles by an excited compound nucleus
has been successfully described by comparing the nucleus with the evapora-
tion of molecules from a fluid [1]. The first statistical theory of compound
nuclear decay is due to Weisskopf and Ewing[2].

36.2 Model description.

The Weisskopf treatment is an application of the detailed balance principle
that relates the probabilities to go from a state i to another d and viceversa
through the density of states in the two systems:

Pi→dρ(i) = Pd→iρ(d) (36.1)

where Pd→i is the probability per unit of time of a nucleus d captures a particle
j and form a compound nucleus i which is proportional to the compound
nucleus cross section σinv. Thus, the probability that a parent nucleus i with
an excitation energy E∗ emits a particle j in its ground state with kinetic
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energy ε is

Pj(ε)dε = gjσinv(ε)
ρd(Emax − ε)

ρi(E∗)
εdε (36.2)

where ρi(E
∗) is the level density of the evaporating nucleus, ρd(Emax−ε) that

of the daugther (residual) nucleus after emission of a fragment j and Emax is
the maximum energy that can be carried by the ejectile. With the spin sj and
the mass mj of the emitted particle, gj is expressed as gj = (2sj +1)mj/π

2
~

2.
This formula must be implemented with a suitable form for the level den-

sity and inverse reaction cross section. We have followed, like many other
implementations, the original work of Dostrovsky et al. [3] (which represents
the first Monte Carlo code for the evaporation process) with slight modifi-
cations. The advantage of the Dostrovsky model is that it leds to a simple
expression for equation 36.2 that can be analytically integrated and used for
Monte Carlo sampling.

36.2.1 Cross sections for inverse reactions.

The cross section for inverse reaction is expressed by means of empirical
equation [3]

σinv(ε) = σgα

(

1 +
β

ε

)

(36.3)

where σg = πR2 is the geometric cross section.

In the case of neutrons, α = 0.76+2.2A− 1
3 and β = (2.12A− 2

3 − 0.050)/α
MeV. This equation gives a good agreement to those calculated from con-
tinuum theory [4] for intermediate nuclei down to ε ∼ 0.05 MeV. For lower
energies σinv,n(ε) tends toward infinity, but this causes no difficulty because
only the product σinv,n(ε)ε enters in equation 36.2. It should be noted, that
the inverse cross section needed in 36.2 is that between a neutron of kinetic
energy ε and a nucleus in an excited state.

For charged particles (p, d, t, 3He and α), α = (1 + cj) and β = −Vj ,
where cj is a set of parameters calculated by Shapiro [5] in order to provide
a good fit to the continuum theory [4] cross sections and Vj is the Coulomb
barrier.

36.2.2 Coulomb barriers.

Coulomb repulsion, as calculated from elementary electrostatics are not
directly applicable to the computation of reaction barriers but must be cor-
rected in several ways. The first correction is for the quantum mechanical
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phenomenoon of barrier penetration. The proper quantum mechanical ex-
pressions for barrier penetration are far too complex to be used if one wishes
to retain equation 36.2 in an integrable form. This can be approximately
taken into account by multiplying the electrostatic Coulomb barrier by a
coefficient kj designed to reproduce the barrier penetration approximately
whose values are tabulated [5].

Vj = kj
ZjZde

2

Rc
(36.4)

The second correction is for the separation of the centers of the nuclei at
contact, Rc. We have computed this separation as Rc = Rj + Rd where

Rj,d = rcA
1/3
j,d and rc is given [6] by

rc = 2.173
1 + 0.006103ZjZd

1 + 0.009443ZjZd

(36.5)

36.2.3 Level densities.

The simplest and most widely used level density based on the Fermi
gas model are those of Weisskopf [7] for a completely degenerate Fermi gas.
We use this approach with the corrections for nucleon pairing proposed by
Hurwitz and Bethe [8] which takes into account the displacements of the
ground state:

ρ(E) = C exp
(

2
√

a(E − δ)
)

(36.6)

where C is considered as constant and does not need to be specified since
only ratios of level densities enter in equation 36.2. δ is the pairing energy
correction of the daughter nucleus evaluated by Cook et al. [9] and Gilbert
and Cameron [10] for those values not evaluated by Cook et al.. The level
density parameter is calculated according to:

a(E,A, Z) = ã(A)

{

1 +
δ

E
[1 − exp(−γE)]

}

(36.7)

and the parameters calculated by Iljinov et al. [11] and shell corrections of
Truran, Cameron and Hilf [12].

36.2.4 Maximum energy available for evaporation.

The maximum energy avilable for the evaporation process (i.e. the
maximum kinetic energy of the outgoing fragment) is usually computed
like E∗ − δ − Qj where is the separation energy of the fragment j: Qj =
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Mi −Md −Mj and Mi, Md and Mj are the nclear masses of the compound,
residual and evporated nuclei respectively. However, that expression does
not consider the recoil energy of the residual nucleus. In order to take into
account the recoil energy we use the expression

εmax
j =

(Mi + E∗ − δ)2 +M2
j −M2

d

2(Mi + E∗ − δ)
−Mj (36.8)

36.2.5 Total decay width.

The total decay width for evaporation of a fragment j can be obtained by
integrating equation 36.2 over kinetic energy

Γj = ~

∫ εmax
j

Vj

P (εj)dεj (36.9)

This integration can be performed analiticaly if we use equation 36.6 for level
densities and equation 36.3 for inverse reaction cross section. Thus, the total
width is given by

Γj =
gjmjR

2
d

2π~2

α

a2
d

×












{(

βad −
3

2

)

+ ad(ε
max
j − Vj)

}

exp
{

−
√

ai(E∗ − δi)
}

+

{

(2βad − 3)
√

ad(εmax
j − Vj) + 2ad(ε

max
j − Vj)

}

×

exp
{

2
[√

ad(εmax
j − Vj) −

√

ai(E∗ − δi)
]}













(36.10)

where ad = a(Ad, Zd, ε
max
j ) and ai = a(Ai, Zi, E

∗).

36.3 GEM Model

As an alternative model we have implemented the generalized evaporation
model (GEM) by Furihata [13]. This model considers emission of fragments
heavier than α particles and uses a more accurate level density function for
total decay width instead of the approximation used by Dostrovsky. We use
the same set of parameters but for heavy ejectiles the parameters determined
by Matsuse et al. [14] are used.

Based on the Fermi gas model, the level density function is expressed as

ρ(E) =

{ √
π

12
e2
√
a(E−δ)

a1/4(E−δ)5/4
for E ≥ Ex

1
T
e(E−E0)/T for E < Ex

(36.11)

535



where Ex = Ux + δ and Ux = 150/Md + 2.5 (Md is the mass of the daughter
nucleus). Nuclear temperature T is given as 1/T =

√

a/Ux − 1.5Ux, and E0

is defined as E0 = Ex − T (logT − log a/4 − (5/4) logUx + 2
√
aUx).

By substituting equation 36.11 into equation 36.2 and integrating over
kinetic energy can be obtained the following expression

Γj =

√
πgjπR

2
dα

12ρ(E∗)
×







{I1(t, t) + (β + V )I0(t)} for εmax
j − Vj < Ex

{I1(t, tx) + I3(s, sx)e
s+

(β + V )(I0(tx) + I2(s, sx)e
s)} for εmax

j − Vj ≥ Ex.
(36.12)

I0(t), I1(t, tx), I2(s, sx), and I3(s, sx) are expressed as:

I0(t) = e−E0/T (et − 1) (36.13)

I1(t, tx) = e−E0/TT{(t− tx + 1)etx − t− 1} (36.14)

I2(s, sx) = 2
√

2

{

s−3/2 + 1.5s−5/2 + 3.75s−7/2 −

(s−3/2
x + 1.5s−5/2

x + 3.75s−7/2
x )

}

(36.15)

I3(s, sx) =
1

2
√

2

[

2s−1/2 + 4s−3/2 + 13.5s−5/2 + 60.0s−7/2 +

325.125s−9/2 −
{

(s2 − s2
x)s

−3/2
x + (1.5s2 + 0.5s2

x)s
−5/2
x +

(3.75s2 + 0.25s2
x)s

−7/2
x + (12.875s2 + 0.625s2

x)s
−9/2
x +

(59.0625s2 + 0.9375s2
x)s

−11/2
x +

(324.8s2 + 3.28s2
x)s

−13/2
x +

}

]

(36.16)

where t = (εmax
j − Vj)/T , tx = Ex/T , s = 2

√

a(εmax
j − Vj − δj) and sx =

2
√

a(Ex − δ).
Besides light fragments, 60 nuclides up to 28Mg are considered, not only in

their ground states but also in their exited states, are considered. The excited
state is assumed to survive if its lifetime T1/2 is longer than the decay time,
i. e., T1/2/ ln 2 > ~/Γ∗

j , where Γ∗
j is the emission width of the resonance

calculated in the same manner as for ground state particle emission. The
total emission width of an ejectile j is summed over its ground state and all
its excited states which satisfy the above condition.
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36.4 Fission probability calculation.

The fission decay channel (only for nuclei with A > 65) is taken into
account as a competitor for fragment and photon evaporation channels.

36.4.1 The fission total probability.

The fission probability (per unit time)Wfis in the Bohr and Wheeler theory
of fission [15] is proportional to the level density ρfis(T ) ( approximation Eq.
(36.6) is used) at the saddle point, i.e.

Wfis = 1
2π~ρfis(E∗)

∫ E∗−Bfis
0

ρfis(E
∗ − Bfis − T )dT =

=
1+(Cf−1) exp (Cf )

4πafis exp (2
√

aE∗)
,

(36.17)

where Bfis is the fission barrier height. The value of Cf = 2
√

afis(E∗ −Bfis)
and a, afis are the level density parameters of the compound and of the fission
saddle point nuclei, respectively.

The value of the level density parameter is large at the saddle point, when
excitation energy is given by initial excitation energy minus the fission barrier
height, than in the ground state, i. e. afis > a. afis = 1.08a for Z < 85,
afis = 1.04a for Z ≥ 89 and af = a[1.04 + 0.01(89.− Z)] for 85 ≤ Z < 89 is
used.

36.4.2 The fission barrier.

The fission barrier is determined as difference between the saddle-point
and ground state masses.

We use simple semiphenomenological approach was suggested by Barashenkov
and Gereghi [16]. In their approach fission barrier Bfis(A,Z) is approximated
by

Bfis = B0
fis + ∆g + ∆p. (36.18)

The fission barrier height B0
fis(x) varies with the fissility parameter x =

Z2/A. B0
fis(x) is given by

B0
fis(x) = 12.5 + 4.7(33.5 − x)0.75 (36.19)

for x ≤ 33.5 and
B0

fis(x) = 12.5 − 2.7(x− 33.5)2/3 (36.20)

for x > 33.5. The ∆g = ∆M(N) + ∆M(Z), where ∆M(N) and ∆M(Z) are
shell corrections for Cameron’s liquid drop mass formula [17] and the pairing
energy corrections: ∆p = 1 for odd-odd nuclei, ∆p = 0 for odd-even nuclei,
∆p = 0.5 for even-odd nuclei and ∆p = −0.5 for even-even nuclei.
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36.5 The Total Probability for Photon Evap-

oration

As the first approximation we assume that dipole E1–transitions is the
main source of γ–quanta from highly–excited nuclei [11]. The probability to
evaporate γ in the energy interval (ǫγ , ǫγ + dǫγ) per unit of time is given

Wγ(ǫγ) =
1

π2(~c)3
σγ(ǫγ)

ρ(E∗ − ǫγ)

ρ(E∗)
ǫ2γ, (36.21)

where σγ(ǫγ) is the inverse (absorption of γ) reaction cross section, ρ is a
nucleus level density is defined by Eq. (36.6).

The photoabsorption reaction cross section is given by the expression

σγ(ǫγ) =
σ0ǫ

2
γΓ

2
R

(ǫ2γ − E2
GDP )2 + Γ2

Rǫ
2
γ

, (36.22)

where σ0 = 2.5A mb, ΓR = 0.3EGDP and EGDP = 40.3A−1/5 MeV are
empirical parameters of the giant dipole resonance [11]. The total radiation
probability is

Wγ =
3

π2(~c)3

∫ E∗

0

σγ(ǫγ)
ρ(E∗ − ǫγ)

ρ(E∗)
ǫ2γdǫγ. (36.23)

The integration is performed numericaly.

36.5.1 Energy of evaporated photon

The energy of γ-quantum is sampled according to the Eq. (36.21) distri-
bution.

36.6 Discrete photon evaporation

The last step of evaporation cascade consists of evaporation of photons
with discrete energies. The competition between photons and fragments as
well as giant resonance photons is neglected at this step. We consider the
discrete E1, M1 and E2 photon transitions from tabulated isotopes. There
are large number of isotopes [18] with the experimentally measured exited
level energies, spins, parities and relative transitions probabilities. This in-
formation is implemented in the code.
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36.7 Internal conversion electron emission

An important conpetitive channel to photon emission is internal con-
version. To take this into account, the photon evaporation data-base was
entended to include internal conversion coeffficients.

The above constitute the first six columns of data in the photon evap-
oration files. The new version of the data base adds eleven new columns
corresponding to:

7. ratio of internal conversion to gamma-ray emmission probability

8. - 17. internal conversion coefficients for shells K, L1, L2, L3, M1, M2,
M3, M4, M5 and N+ respectively. These coefficients are normalised to
1.0

The calculation of the Internal Conversion Coefficients (ICCs) is done by a
cubic spline interpolation of tabulalted data for the corresponding transition
energy. These ICC tables, which we shall label Band [19], Rösel [20] and
Hager-Seltzer [21], are widely used and were provided in electronic format
by staff at LBNL. The reliability of these tabulated data has been reviewed
in Ref. [22]. From tests carried out on these data we find that the ICCs
calculated from all three tables are comparable within a 10% uncertainty,
which is better than what experimetal measurements are reported to be able
to achive.

The range in atomic number covered by these tables is Band: 1 <= Z <=
80; Rösel: 30 <= Z <= 104 and Hager-Seltzer: 3, 6, 10, 14 <= Z <= 103.
For simplicity and taking into account the completeness of the tables, we
have used the Band table for Z <= 80 and Rösel for 81 <= Z <= 98.

The Band table provides a higher resolution of the ICC curves used in the
interpolation and covers ten multipolarities for all elements up to Z = 80,
but it only includes ICCs for shells up to M5. In order to calculate the
ICC of the N+ shell, the ICCs of all available M shells are added together
and the total divided by 3. This is the scheme adopted in the LBNL ICC
calculation code when using the Band table. The Rösel table includes ICCs
for all shells in every atom and for Z > 80 the N+ shell ICC is calculated
by adding together the ICCs of all shells above M5. In this table only eight
multipolarities have ICCs calculated for.

36.7.1 Multipolarity

The ENSDF data provides information on the multipolarity of the transition.
The ICCs included in the photon evaporation data base refer to the multi-
polarity indicated in the ENSDF file for that transition. Only one type of

539



mixed mulltipolarity is considered (M1+E2) and whenever the mixing ratio
is provided in the ENSDF file, it is used to calculate the ICCs corresponding
to the mixed multipolarity according the the formula:

- fraction in M1 = 1/(1 + δ2)
- fraction in E2 = δ2/(1 + δ2)

where δ is the mixing ratio.

36.7.2 Binding energy

For the production of an internal conversion electron, the energy of the tran-
sition must be at least the binding energy of the shell the electron is being
released from. The binding energy corresponding to the various shells in all
isotopes used in the ICC calculation has been taken from the Geant4 file
G4AtomicShells.hh.

36.7.3 Isotopes

The list of isotopes included in the photon evaporation data base has been
extended from A <= 240 to A <= 250. The highest atomic number included
is Z = 98 (this ensures that Americium sources can now be simulated).
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Chapter 37

Fission model.

37.1 Reaction initial state.

The GEANT4 fission model is capable to predict final excited fragments
as result of an excited nucleus symmetric or asymmetric fission. The fission
process (only for nuclei with atomic number A ≥ 65) is considered as a com-
petitor for evaporation process, when nucleus transits from an excited state
to the ground state. Here we describe the final state generation. The cal-
culation of the relative probability of fission with respect to the evaporation
channels are described in the chapter concerning evaporation.

The initial information for calculation of fission decay consists from the
atomic mass number A, charge Z of excited nucleus, its four momentum P0

and excitation energy U .

37.2 Fission process simulation.

37.2.1 Atomic number distribution of fission products.

As follows from experimental data [1] mass distribution of fission products
consists of the symmetric and the asymmetric components:

F (Af) = Fsym(Af) + ωFasym(Af ), (37.1)

where ω(U,A, Z) defines relative contribution of each component and it de-
pends from excitation energy U and A,Z of fissioning nucleus. It was found
in [2] that experimental data can be approximated with a good accuracy, if
one take

Fsym(Af ) = exp [−(Af − Asym)2

2σ2
sym

] (37.2)
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and
Fasym(Af ) = exp [− (Af−A2)2

2σ2
2

] + exp [−Af−(A−A2)
2

2σ2
2

]+

+Casym{exp [− (Af−A1)2

2σ2
1

] + exp [−Af−(A−A1)
2

2σ2
2

]},
(37.3)

where Asym = A/2, A1 and A2 are the mean values and σ2
sim, σ2

1 and σ2
2 are

dispertions of the Gaussians respectively. From an analysis of experimental
data [2] the parameter Casym ≈ 0.5 was defined and the next values for
dispersions:

σ2
sym = exp (0.00553U + 2.1386), (37.4)

where U in MeV,
2σ1 = σ2 = 5.6 MeV (37.5)

for A ≤ 235 and

2σ1 = σ2 = 5.6 + 0.096(A− 235) MeV (37.6)

for A > 235 were found.
The weight ω(U,A, Z) was approximated as follows

ω =
ωa − Fasym(Asym)

1 − ωaFsym((A1 + A2)/2)
. (37.7)

The values of ωa for nuclei with 96 ≥ Z ≥ 90 were approximated by

ωa(U) = exp (0.538U − 9.9564) (37.8)

for U ≤ 16.25 MeV,

ωa(U) = exp (0.09197U − 2.7003) (37.9)

for U > 16.25 MeV and

ωa(U) = exp (0.09197U − 1.08808) (37.10)

for z = 89. For nuclei with Z ≤ 88 the authors of [2] constracted the following
approximation:

ωa(U) = exp [0.3(227 − a)] exp {0.09197[U − (Bfis − 7.5)] − 1.08808},
(37.11)

where for A > 227 and U < Bfis − 7.5 the corresponding factors occuring in
exponential functions vanish.
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37.2.2 Charge distribution of fission products.

At given mass of fragment Af the experimental data [1] on the charge Zf

distribution of fragments are well approximated by Gaussian with dispertion
σ2

z = 0.36 and the average < Zf > is described by expression:

< Zf >=
Af

A
Z + ∆Z, (37.12)

when parameter ∆Z = −0.45 for Af ≥ 134, ∆Z = −0.45(Af −A/2)/(134−
A/2) for A− 134 < Af < 134 and ∆Z = 0.45 for A ≤ A− 134.

After sampling of fragment atomic masses numbers and fragment charges,
we have to check that fragment ground state masses do not exceed initial
energy and calculate the maximal fragment kinetic energy

Tmax < U +M(A,Z) −M1(Af1, Zf1) −M2(Af2, Zf2), (37.13)

where U and M(A,Z) are the excitation energy and mass of initial nucleus,
M1(Af1, Zf1), and M2(Af2, Zf2) are masses of the first and second fragment,
respectively.

37.2.3 Kinetic energy distribution of fission products.

We use the empiricaly defined [3] dependence of the average kinetic energy
< Tkin > (in MeV) of fission fragments on the mass and the charge of a
fissioning nucleus:

< Tkin >= 0.1178Z2/A1/3 + 5.8. (37.14)

This energy is distributed differently in cases of symmetric and asymmetric
modes of fission. It follows from the analysis of data [2] that in the asym-
metric mode, the average kinetic energy of fragments is higher than that in
the symmetric one by approximately 12.5 MeV. To approximate the average
numbers of kinetic energies < T sym

kin and < T asym
kin > for the symmetric and

asymmetric modes of fission the authors of [2] suggested empirical expres-
sions:

< T sym
kin >=< Tkin > −12.5Wasim, (37.15)

< T asym
kin >=< Tkin > +12.5Wsim, (37.16)

where

Wsim = ω

∫

Fsim(A)dA/

∫

F (A)dA (37.17)

and

Wasim =

∫

Fasim(A)dA/

∫

F (A)dA, (37.18)
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respectively. In the symmetric fission the experimental data for the ratio of
the average kinetic energy of fission fragments< Tkin(Af) > to this maximum
energy < Tmax

kin > as a function of the mass of a larger fragment Amax can be
approximated by expressions

< Tkin(Af) > / < Tmax
kin >= 1 − k[(Af − Amax)/A]2 (37.19)

for Asim ≤ Af ≤ Amax + 10 and

< Tkin(Af) > / < Tmax
kin >= 1 − k(10/A)2 − 2(10/A)k(Af − Amax − 10)/A

(37.20)
for Af > Amax + 10, where Amax = Asim and k = 5.32 and Amax = 134 and
k = 23.5 for symmetric and asymmetric fission respectively. For both modes
of fission the distribution over the kinetic energy of fragments Tkin is choosen
Gaussian with their own average values < Tkin(Af) >=< T sym

kin (Af) > or
< Tkin(Af) >=< T asym

kin (Af) > and dispersions σ2
kin equal 82 MeV or 102

MeV2 for symmetrical and asymmetrical modes, respectively.

37.2.4 Calculation of the excitation energy of fission
products.

The total excitation energy of fragments Ufrag can be defined according to
equation:

Ufrag = U +M(A,Z) −M1(Af1, Zf1) −M2(Af2, Zf2) − Tkin, (37.21)

where U and M(A,Z) are the excitation energy and mass of initial nucleus,
Tkin is the fragments kinetic energy, M1(Af1, Zf1), and M2(Af2, Zf2) are
masses of the first and second fragment, respectively.

The value of excitation energy of fragment Uf determines the fragment
temperature (T =

√

Uf/af , where af ∼ Af is the parameter of fragment
level density). Assuming that after disintegration fragments have the same
temperature as initial nucleus than the total excitation energy will be dis-
tributed between fragments in proportion to their mass numbers one obtains

Uf = Ufrag
Af

A
. (37.22)

37.2.5 Excited fragment momenta.

Assuming that fragment kinetic energy Tf = P 2
f /(2(M(Af , Zf + Uf ) we

are able to calculate the absolute value of fragment c.m. momentum

Pf =
(M1(Af1, Zf1 + Uf1)(M2(Af2, Zf2 + Uf2)

M1(Af1, Zf1) + Uf1 +M2(Af2, Zf2) + Uf2
Tkin. (37.23)
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and its components, assuming fragment isotropical distribution.
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Chapter 38

Fermi break-up model.

38.1 Fermi break-up simulation for light nu-

clei.

The GEANT4 Fermi break-up model is capable to predict final states as
result of an excited nucleus with atomic number A < 17 statistical break-up.

For light nuclei the values of excitation energy per nucleon are often
comparable with nucleon binding energy. Thus a light excited nucleus breaks
into two or more fragments with branching given by available phase space.
To describe a process of nuclear disassembling the so-called Fermi break-up
model is used [1], [2], [3]. This statistical approach was first used by Fermi
[1] to describe the multiple production in high energy nucleon collision.

38.1.1 Allowed channel.

The channel will be allowed for decay, if the total kinetic energy Ekin of all
fragments of the given channel at the moment of break-up is positive. This
energy can be calculated according to equation:

Ekin = U +M(A,Z) −ECoulomb −
n
∑

b=1

(mb + ǫb), (38.1)

mb and ǫb are masses and excitation energies of fragments, respectively,
ECoulomb is the Coulomb barrier for a given channel. It is approximated
by

ECoulomb =
3

5

e2

r0
(1 +

V

V0
)−1/3(

Z2

A1/3
−

n
∑

b=1

Z2

A
1/3
b

), (38.2)

where V0 is the volume of the system corresponding to the normal nuclear
matter density and κ = V

V0
is a parameter ( κ = 1 is used).
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38.1.2 Break-up probability.

The total probability for nucleus to break-up into n componets (nucleons,
deutrons, tritons, alphas etc) in the final state is given by

W (E, n) = (V/Ω)n−1ρn(E), (38.3)

where ρn(E) is the density of a number of final states, V is the volume of
decaying system and Ω = (2π~)3 is the normalization volume. The density
ρn(E) can be defined as a product of three factors:

ρn(E) = Mn(E)SnGn. (38.4)

The first one is the phase space factor defined as

Mn =

∫ +∞

−∞
...

∫ +∞

−∞
δ(

n
∑

b=1

pb)δ(E −
n
∑

b=1

√

p2 +m2
b)

n
∏

b=1

d3pb, (38.5)

where pb is fragment b momentum. The second one is the spin factor

Sn =
n
∏

b=1

(2sb + 1), (38.6)

which gives the number of states with different spin orientations. The last
one is the permutation factor

Gn =
k
∏

j=1

1

nj !
, (38.7)

which takes into account identity of components in final state. nj is a number

of components of j- type particles and k is defined by n =
∑k

j=1 nj).
In non-relativistic case (Eq. (38.10) the integration in Eq. (38.5) can be

evaluated analiticaly (see e. g. [5]). The probability for a nucleus with energy
E disassembling into n fragments with masses mb, where b = 1, 2, 3, ..., n
equals

W (Ekin, n) = SnGn(
V

Ω
)n−1(

1
∑n

b=1mb

n
∏

b=1

mb)
3/2 (2π)3(n−1)/2

Γ(3(n− 1)/2)
E

3n/2−5/2
kin ,

(38.8)
where Γ(x) is the gamma function.
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38.1.3 Fermi break-up model parameter.

Thus the Fermi break-up model has only one free parameter V is the
volume of decaying system, which can be calculated as follows:

V = 4πR3/3 = 4πr3
0A/3, (38.9)

where r0 = 1.4 fm is used.

38.1.4 Fragment characteristics.

We take into account the formation of fragments in their ground and low-
lying excited states, which are stable for nucleon emission. However, several
unstable fragments with large lifetimes: 5He, 5Li, 8Be, 9B etc are also con-
sidered. Fragment characteristics Ab, Zb, sb and ǫb are taken from [6].

38.1.5 MC procedure.

The nucleus break-up is described by the Monte Carlo (MC) procedure.
We randomly (according to probability Eq. (38.8) and condition Eq. (38.1))
select decay channel. Then for given channel we calculate kinematical quan-
tities of each fragment according to n-body phase space distribution:

Mn =

∫ +∞

−∞
...

∫ +∞

−∞
δ(

n
∑

b=1

pb)δ(
n
∑

b=1

p2
b

2mb

−Ekin)
n
∏

b=1

d3pb. (38.10)

The Kopylov’s sampling procedure [7] is applied. The angular distributions
for emitted fragments are considered to be isotropical.
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Chapter 39

Multifragmentation model.

39.1 Multifragmentation process simulation.

The GEANT4 multifragmentation model is capable to predict final states
as result of an highly excited nucleus statistical break-up.

The initial information for calculation of multifragmentation stage con-
sists from the atomic mass number A, charge Z of excited nucleus and its
excitation energy U . At high excitation energies U/A > 3 MeV the multi-
fragmentation mechanism, when nuclear system can eventually breaks down
into fragments, becomes the dominant. Later on the excited primary frag-
ments propagate independently in the mutual Coulomb field and undergo
de-excitation. Detailed description of multifragmentation mechanism and
model can be found in review [1].

39.1.1 Multifragmentation probability.

The probability of a breakup channel b is given by the expression (in the
so-called microcanonical approach [1], [2]):

Wb(U,A, Z) =
1

∑

b exp[Sb(U,A, Z)]
exp[Sb(U,A, Z)], (39.1)

where Sb(U,A, Z) is the entropy of a multifragment state corresponding to the
breakup channel b. The channels {b} can be parametrized by set of fragment
multiplicities NAf ,Zf for fragment with atomic number Af and charge Zf .
All partitions {b} should satisfy constraints on the total mass and charge:

∑

f

NAf ,ZfAf = A (39.2)
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and
∑

f

NAf ,ZfZf = Z. (39.3)

It is assumed [2] that thermodynamic equilibrium is established in every
channel, which can be characterized by the channel temperature Tb.

The channel temperature Tb is determined by the equation constraining
the average energy Eb(Tb, V ) associated with partition b:

Eb(Tb, V ) = U + Eground = U +M(A,Z), (39.4)

where V is the system volume, Eground is the ground state (at Tb = 0) energy
of system and M(A,Z) is the mass of nucleus.

According to the conventional thermodynamical formulae the average en-
ergy of a partitition b is expressed through the system free energy Fb as
follows

Eb(Tb, V ) = Fb(Tb, V ) + TbSb(Tb, V ). (39.5)

Thus, if free energy Fb of a partition b is known, we can find the channel
temperature Tb from Eqs. (39.4) and (39.5), then the entropy Sb = −dFb/dTb

and hence, decay probability Wb defined by Eq. (39.1) can be calculated.
Calculation of the free energy is based on the use of the liquid-drop de-

scription of individual fragments [2]. The free energy of a partition b can be
splitted into several terms:

Fb(Tb, V ) =
∑

f

Ff (Tb, V ) + EC(V ), (39.6)

where Ff (Tb, V ) is the average energy of an individual fragment including
the volume

F V
f = [−E0 − T 2

b /ǫ(Af )]Af , (39.7)

surface
F Sur

f = β0[(T
2
c − T 2

b )/(T 2
c + T 2

b )]5/4A
2/3
f = β(Tb)A

2/3
f , (39.8)

symmetry
F Sim

f = γ(Af − 2Zf)
2/Af , (39.9)

Coulomb

FC
f =

3

5

Z2
fe

2

r0A
1/3
f

[1 − (1 + κC)−1/3] (39.10)

and translational

F t
f = −Tb ln (gfVf/λ

3
Tb

) + Tb ln (NAf ,Zf !)/NAf ,Zf (39.11)
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terms and the last term

EC(V ) =
3

5

Z2e2

R
(39.12)

is the Coulomb energy of the uniformly charged sphere with charge Ze and
the radius R = (3V/4π)1/3 = r0A

1/3(1 + κC)1/3, where κC = 2 [2].
Parameters E0 = 16 MeV, β0 = 18 MeV, γ = 25 MeV are the coefficients

of the Bethe-Weizsacker mass formula at Tb = 0. gf = (2Sf + 1)(2If + 1)
is a spin Sf and isospin If degeneracy factor for fragment ( fragments with
Af > 1 are treated as the Boltzmann particles), λTb = (2πh2/mNTb)

1/2 is
the thermal wavelength, mN is the nucleon mass, r0 = 1.17 fm, Tc = 18
MeV is the critical temperature, which corresponds to the liquid-gas phase
transition. ǫ(Af ) = ǫ0[1 + 3/(Af − 1)] is the inverse level density of the
mass Af fragment and ǫ0 = 16 MeV is considered as a variable model
parameter, whose value depends on the fraction of energy transferred to the
internal degrees of freedom of fragments [2]. The free volume Vf = κV =
κ4

3
πr4

0A available to the translational motion of fragment, where κ ≈ 1 and
its dependence on the multiplicity of fragments was taken from [2]:

κ = [1 +
1.44

r0A1/3
(M1/3 − 1)]3 − 1. (39.13)

For M = 1 κ = 0.
The light fragments with Af < 4, which have no excited states, are con-

sidered as elementary particles characterized by the empirical masses Mf ,
radii Rf , binding energies Bf , spin degeneracy factors gf of ground states.
They contribute to the translation free energy and Coulomb energy.

39.1.2 Direct simulation of the low multiplicity multi-

fragment disintegration

At comparatively low excitation energy (temperature) system will disin-
tegrate into a small number of fragments M ≤ 4 and number of channel is
not huge. For such situation a direct (microcanonical) sorting of all decay
channels can be performed. Then, using Eq. (39.1), the average multiplicity
value < M > can be found. To check that we really have the situation with
the low excitation energy, the obtained value of < M > is examined to obey
the inequality < M >≤ M0, where M0 = 3.3 and M0 = 2.6 for A ∼ 100
and for A ∼ 200, respectively [2]. If the discussed inequality is fulfilled, then
the set of channels under consideration is belived to be able for a correct
description of the break up. Then using calculated according Eq. (39.1)
probabilities we can randomly select a specific channel with given values of
Af and Zf .
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39.1.3 Fragment multiplicity distribution.

The individual fragment multiplicities NAf ,Zf in the so-called macrocanon-
ical ensemble [1] are distributed according to the Poisson distribution:

P (NAf ,Zf ) = exp (−ωAf ,Zf )
ω

NAf ,Zf
Af ,Zf

NAf ,Zf !
(39.14)

with mean value < NAf ,Zf >= ωAf ,Zf defined as

< NAf ,Zf >= gfA
3/2
f

Vf

λ3
Tb

exp [
1

Tb
(Ff(Tb, V ) − F t

f (Tb, V ) − µAf − νZf )],

(39.15)
where µ and ν are chemical potentials. The chemical potential are found by
substituting Eq. (39.15) into the system of constraints:

∑

f

< NAf ,Zf > Af = A (39.16)

and
∑

f

< NAf ,Zf > Zf = Z (39.17)

and solving it by iteration.

39.1.4 Atomic number distribution of fragments.

Fragment atomic numbers Af > 1 are also distributed according to the
Poisson distribution [1] (see Eq. (39.14)) with mean value < NAf > defined
as

< NAf >= A
3/2
f

Vf

λ3
Tb

exp [
1

Tb
(Ff(Tb, V ) − F t

f(Tf , V ) − µAf − ν < Zf >)],

(39.18)
where calculating the internal free energy Ff(Tb, V ) − F t

f(Tb, V ) one has to
substitute Zf →< Zf >. The average charge < Zf > for fragment having
atomic number Af is given by

< Zf(Af) >=
(4γ + ν)Af

8γ + 2[1 − (1 + κ)−1/3]A
2/3
f

. (39.19)
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39.1.5 Charge distribution of fragments.

At given mass of fragment Af > 1 the charge Zf distribution of fragments
are described by Gaussian

P (Zf(Af)) ∼ exp [−(Zf(Af )− < Zf(Af) >)2

2(σZf (Af))2
] (39.20)

with dispertion

σZf (Af ) =

√

AfTb

8γ + 2[1 − (1 + κ)−1/3]A
2/3
f

≈
√

AfTb

8γ
. (39.21)

and the average charge < Zf(Af ) > defined by Eq. (39.17).

39.1.6 Kinetic energy distribution of fragments.

It is assumed [2] that at the instant of the nucleus break-up the kinetic
energy of the fragment T f

kin in the rest of nucleus obeys the Boltzmann dis-
tribution at given temperature Tb:

dP (T f
kin)

dT f
kin

∼
√

T f
kin exp (−T f

kin/Tb). (39.22)

Under assumption of thermodynamic equilibrium the fragment have isotropic
velocities distribution in the rest frame of nucleus. The total kinetic energy
of fragments should be equal 3

2
MTb, where M is fragment multiplicity, and

the total fragment momentum should be equal zero. These conditions are
fullfilled by choosing properly the momenta of two last fragments.

The initial conditions for the divergence of the fragment system are de-
termined by random selection of fragment coordinates distributed with equal
probabilities over the break-up volume Vf = κV . It can be a sphere or pro-
longated ellipsoid. Then Newton’s equations of motion are solved for all
fragments in the self-consistent time-dependent Coulomb field [2]. Thus the
asymptotic energies of fragments determined as result of this procedure differ
from the initial values by the Coulomb repulsion energy.

39.1.7 Calculation of the fragment excitation energies.

The temparature Tb determines the average excitation energy of each frag-
ment:

Uf (Tb) = Ef(Tb) −Ef (0) =
T 2

b

ǫ0
Af + [β(Tb) − Tb

dβ(Tb)

dTb
− β0]A

2/3
f , (39.23)
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where Ef (Tb) is the average fragment energy at given temperature Tb and
β(Tb) is defined in Eq. (39.8). There is no excitation for fragment with
Af < 4, for 4He excitation energy was taken as U4He = 4T 2

b /ǫo.
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Chapter 40

INCL++: the Liège Intranuclear
Cascade model

40.1 Introduction

There is a renewed interest in the study of spallation reactions. This is largely
due to new technological applications, such as Accelerator-Driven Systems,
consisting of sub-critical nuclear reactor coupled to a particle accelerator.
These applications require optimized targets as spallation sources. This type
of problem typically involves a large number of parameters and thus it cannot
be solved by trial and error. One has to rely on simulations, which implies
that very accurate tools need to be developed and their validity and accuracy
need to be assessed.

Above ∼200 MeV incident energy it is necessary to use reliable mod-
els due to the prohibitive number of open channels. The most appropri-
ate modeling technique in this energy region is intranuclear cascade (INC)
combined with evaporation model. One such pair of models is the Liège
cascade model INCL++ coupled with the G4ExcitationHandler statistical
de-excitation model. The strategy adopted by the INCL++ cascade is to im-
prove the quasi-classical treatment of physics without relying on too many
free parameters.

This chapter introduces the physics provided by INCL++ as implemented
in Geant4. Table 40.1 summarizes the key features and provides references
to detailed descriptions of the physics.

The INCL++ model is available through dedicated physics lists (see Ta-
ble 40.1). The * HP variants of the physics lists use the NeutronHP model
(Chapter 42) for neutron interactions at low energy; the QGSP * and FTFP *

variants respectively use the QGSP and FTFP model at high energy. Figure 40.1
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1.5 AMeV

3 AGeV

10 AGeV

20 AMeV

Figure 40.1: Model map for the INCL++-based physics lists. The first two
columns represent nucleon- and pion-induced reactions. The third column
represents nucleus-nucleus reactions where at least one of the partners is
below A = 18. The fourth column represents other nucleus-nucleus reactions.

shows a schematic model map of the INCL++-based physics lists.
Finally, the INCL++ model is directly accessible through its interface

(G4INCLXXInterface).

40.1.1 Suitable application fields

The INCL++-dedicated physics lists are suitable for the simulation of any
system where spallation reactions or light-ion-induced reactions play a dom-
inant role. As examples, we include here a non-exhaustive list of possible
application fields:

• Accelerator-Driven Systems (ADS);

• spallation targets;

• radioprotection close to high-energy accelerators;

• radioprotection in space;
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• proton or carbon therapy;

• production of beams of exotic nuclei.

40.2 Generalities of the INCL++ cascade

INCL++ is a Monte-Carlo simulation incorporating the aforementioned cas-
cade physics principles. The INCL++ algorithm consists of an initialization
stage and the actual data processing stage.

The INCL++ cascade can be used to simulate the collisions between bullet
particles and nuclei. The supported bullet particles and the interface classes
supporting them are presented in table 40.1.

The momenta and positions of the nucleons inside the nuclei are deter-
mined at the beginning of the simulation run by modeling the nucleus as a
free Fermi gas in a static potential well with a realistic density. The cascade
is modeled by tracking the nucleons and their collisions.

The possible reactions inside the nucleus are

• NN → NN (elastic scattering)

• NN → N∆ and N∆ → NN

• ∆ → πN and πN → ∆

40.2.1 Model limits

The INCL++ model has certain limitations with respect to the bullet particle
energy and type, and target-nucleus type. The supported energy range for
bullets is 1 MeV–3 GeV. Any target nucleus from deuterium (2H) up is in
principle acceptable, but not all areas of the nuclide chart have received equal
attention during testing. Heavy nuclei (say above Fe) close to the stability
valley have been more thoroughly studied than light or unstable nuclei. The
model is anyway expected to accept any existing nucleus as a target.

Light nuclei (from A = 2 to A = 18 included) can also be used as pro-
jectiles. The G4INCLXXInterface class can be used for collisions between
nuclei of any mass, but it will internally rely on the Binary Cascade model
(see chapter 32) if both reaction partners have A > 18. A warning message
will be displayed (once) if this happens.
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40.3 Physics ingredients

The philosophy of the INCL++ model is to minimize the number of free pa-
rameters, which guarantees the predictive power of the model. All INCL++
parameters are either taken from known phenomenology (e.g. nuclear radii,
elementary cross sections, nucleon potentials) or fixed once and for all (stop-
ping time, cluster-coalescence parameters).

The nucleons are modeled as a free Fermi gas in a static potential well.
The radius of the well depends on the nucleon momentum, the r-p correlation
being determined by the desired spatial density distribution ρr(r) according
to the following equation:

ρp(p)p
2dp = −dρr(r)

dr

r3

3
dr, (40.1)

where ρp(p) is the momentum-space density (a hard-sphere of radius equal
to the Fermi momentum).

After the initialization a projectile particle, or bullet, is shot towards the
target nucleus. In the following we assume that the projectile is a nucleon
or a pion; the special case of composite projectiles will be described in more
detail in subsection 40.3.4.

The impact parameter, i.e. the distance between the projectile particle
and the center point of the projected nucleus surface is chosen at random.
The value of the impact parameter determines the point where the bullet
particle will enter the calculation volume. After this the algorithm tracks
the nucleons by determining the times at which an event will happen. The
possible events are:

• collision

• decay of a delta resonance

• reflection from the nuclear potential well

• transmission through the nuclear potential well

The particles are assumed to propagate along straight-line trajectories.
The algorithm calculates the time at which events will happen and propagates
the particles directly to their positions at that particular point in time. This
means that the length of the time step in simulation is not constant, and that
we do not need to perform expensive numerical integration of the particle
trajectories.
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Particles in the model are labeled either as participants (projectile parti-
cles and particles that have undergone a collision with a projectile) or spec-
tators (target particles that have not undergone any collision). Collisions
between spectator particles are neglected.

40.3.1 Emission of composite particles

INCL++ is able to simulate the emission of composite particles (up to A = 8)
during the cascade stage. Clusters are formed by coalescence of nucleons;
when a nucleon (the leading particle) reaches the surface and is about to
leave the system, the coalescence algorithm looks for other nucleons that are
“sufficiently close” in phase space; if any are found, a candidate cluster is
formed. If several clusters are formed, the algorithm selects the least excited
one. Penetration of the Coulomb barrier is tested for the candidate cluster,
which is emitted if the test is successful; otherwise, normal transmission of
the leading nucleon is attempted.

There are at least two peculiarities of INCL++’s cluster-coalescence algo-
rithm. First, it acts in phase space, while many existing algorithms act in
momentum space only. Second, it is dynamical, in the sense that it acts on
the instantaneous phase-space distribution of nucleons in the system, and
not on the distribution of the escaping nucleons.

40.3.2 Cascade stopping time

Stopping time is defined as the point in time when the cascade phase is
finished and the excited remnant is passed to evaporation model. In the
INCL++ model the stopping time, tstop, is defined as:

tstop = t0(Atarget/208)0.16. (40.2)

Here Atarget is the target mass number and t0 = 70 fm/c. The intranuclear
cascade also stops if no participants are left in the nucleus.

40.3.3 Conservation laws

The INCL++ model generally guarantees energy and momentum conservation
at the keV level, which is compatible with the numerical accuracy of the
code. It uses G4ParticleTable and G4IonTable for the masses of particles
and ions, which means that the energy balance is guaranteed to be consistent
with radiation transport. However, INCL++ can occasionally generate an
event such that conservation laws cannot be exactly fulfilled; these corner
cases typically happen for very light targets.
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Baryon number and charge are always conserved.

40.3.4 Initialisation of composite projectiles

In the case of composite projectiles, the projectile nucleons are initialised
off their mass shell, to account for their binding in the projectile. The sum
of the four-momenta of the projectile nucleons is equal to the nominal four-
momentum of the projectile nucleus.

Given a random impact parameter, projectile nucleons are separated in
geometrical spectators (those that do not enter the calculation volume) and
geometrical participants (those that do). Geometrical participant that tra-
verse the nucleus without undergoing any collision are coalesced with any ex-
isting geometrical spectators to form an excited projectile-like pre-fragment.
The excitation energy of the pre-fragment is generated by a simple particle-
hole model. At the end of the cascade stage, the projectile-like pre-fragment
is handed over to G4ExcitationHandler.

40.3.5 De-excitation phase

The INCL++ model simulates only the first part of the nuclear reaction; the
de-excitation of the cascade remnant is simulated by default by G4Exci-

tationHandler. As an alternative, the ABLA V3 model (Chapter 41) can
be used instead, by employing the technique described in the Application
Developer Guide, section “hadronic interactions”.

40.4 Physics performance

INCL++ (coupled with G4ExcitationHandler) provides an accurate modeling
tool for spallation studies in the tens of MeV–3 GeV energy range. The
INCL++-ABLA07 [2] model was recognized as one of the best on the market
by the IAEA Benchmark of Spallation Models [3] (note however that the
ABLA07 de-excitation model is presenty not available in Geant4).

As a sample of the quality of the model predictions of INCL++-G4Exci-
tationHandler for nucleon-induced reactions, the left panel of Figure 40.2
presents a comparison of double-differential cross sections for pion production
in 730-MeV p+Cu, compared with the predictions of the Binary-Cascade
model (chapter 32) and with experimental data.

Reactions induced by light-ion projectiles up to A = 18 are also treated by
the model. The right panel of Figure 40.2 shows double-differential cross sec-
tions for neutron production in 290-AMeV 12C+12C. Figure 40.3 shows exci-
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Figure 40.2: Left: double-differential cross sections for the production of
charged pions in 730-MeV p+Cu. Right: double-differential cross sections
for the production of neutrons in 290-AMeV 12C+12C. Predictions of the
INCL++ and Binary-Cascade models are compared with experimental data
from Refs. [4] and [5].
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Figure 40.3: Excitation functions for (α, xn) cross sections on 209Bi. The
predictions of INCL++-G4ExcitationHandler are represented by the solid
line and are compared to experimental data [6, 7, 8, 9, 10, 11, 12, 13, 14].

tation curves for 209Bi(α, xn) reactions at very low energy. We stress here that
intranuclear-cascade models are supposedly not valid below ∼ 150 AMeV.
The very good agreement presented in Figure 40.3 is due to the complete-
fusion model that smoothly replaces INCL++ at low energy.

INCL++ is continuously updated and validated against experimental data.

40.5 Status of this document

28.10.2013: added description of the INCL++-based physics lists; general
update of the document.

16.11.2012: documentation for INCL++ added. Written by D. Mancusi
(CEA-Saclay, France), based on the legacy INCL4.2 documentation
written by P. Kaitaniemi (Helsinki Institute of Physics, Finland).
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Table 40.1: INCL++ feature summary.

usage
physics lists QGSP INCLXX

QGSP INCLXX HP

FTFP INCLXX

FTFP INCLXX HP

interfaces
G4INCLXXInterface nucleon-, pion- and nucleus-nucleus
projectile particles proton, neutron

pions (π+, π0, π−)
deuteron, triton
3He, α
light ions (up to A = 18)

energy range 1 MeV - 3 GeV
target nuclei
lightest applicable deuterium, 2H
heaviest no limit, tested up to uranium
features no ad-hoc parameters

realistic nuclear densities
Coulomb barrier
non-uniform time-step
pion and delta production cross sections
delta decay
Pauli blocking
emission of composite particles (A ≤ 8)
complete-fusion model at low energy
conservation laws satisfied at the keV level

typical CPU time 0.5 . INCL++/Binary Cascade . 2
code size 75 classes, 14k lines
references Ref. [1] and references therein.
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Chapter 41

ABLA V3 evaporation/fission
model

The ABLA V3 evaporation model takes excited nucleus parameters, exci-
tation energy, mass number, charge number and nucleus spin, as input. It
calculates the probabilities for emitting proton, neutron or alpha particle
and also probability for fission to occur. The summary of Geant4 ABLA V3
implementation is represented in Table 41.1.

The probabilities for emission of particle type j are calculated using for-
mula:

Wj(N,Z,E) =
Γj(N,Z,E)

∑

k Γk(N,Z,E)
, (41.1)

where Γj is emission width for particle j, N is neutron number, Z charge
number and E excitation energy. Possible emitted particles are protons,
neutrons and alphas. Emission widths are calculated using the following
formula:

Γj =
1

2πρc(E)

4mjR
2

~2
T 2

j ρj(E − Sj −Bj), (41.2)

where ρc(E) and ρj(E − Sj − Bj) are the level densities of the compound
nucleus and the exit channel, respectively. Bj is the height of the Coulomb
barrier, Sj the separation energy, R is the radius and Tj the temperature of
the remnant nucleus after emission and mj the mass of the emitted particle.

The fission width is calculated from:

Γi =
1

2πρc(E)
Tfρf (E −Bf ), (41.3)

where ρf(E) is the level density of transition states in the fissioning nucleus,
Bf the height of the fission barrier and Tf the temperature of the nucleus.
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Table 41.1: ABLA V3 (located in the Geant4 directory source/processes/-

hadronic/models/abla) feature summary.

Requirements
External data file G4ABLA3.0 available at Geant4 site
Environment variable G4ABLADATA

for external data
Usage
Physics list No default physics list,

see Section 41.4.
Interfaces
G4AblaInterface

Supported input Excited nuclei
Output particles proton, neutron

α
fission products
residual nuclei

Features evaporation of proton, neutron and α
fission

References Key reference: [1], see also [2]

41.1 Level densities

Nuclear level densities are calculated using the following formula:

a = 0.073A[MeV −1] + 0.095BsA
2/3[MeV −2], (41.4)

where A the nucleus mass number and Bs dimensionless surface area of the
nucleus.

41.2 Fission

Fission barrier, used to calculate fission width 41.3, is calculated using a semi-
empirical model fitting to data obtained from nuclear physics experiments.
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41.3 External data file required

ABLA V3 needs specific data files. These files contain ABLA V3 shell correc-
tions and nuclear masses. To enable this data set, the environment variable
G4ABLADATA needs to be set, and the relevant data should be installed on
your machine. You can download them from the Geant4 web site or you can
have CMake download them for you during installation. For Geant4 10.0 we
use the G4ABLA3.0 data files.

41.4 How to use ABLA V3

None of the stock physics lists use the ABLA V3 model by default. It should
also be understood that ABLA V3 is a nuclear de-excitation model and
must be used as a secondary reaction stage; the first, dynamical reaction
stage must be simulated using some other model, typically an intranuclear-
cascade (INC) model. The coupling of the ABLA V3 to the INCL++ model
(Chapter 40) has been somewhat tested and seems to work, but no extensive
benchmarking has been realized at the time of writing. Coupling to the
Binary-Cascade model (Chapter 32) should in principle be possible, but has
never been tested. The technique to realize the coupling is described in the
Application Developer Guide.

Finally, please note that the ABLA V3 model is in alpha status. The
code may crash and be affected by bugs.

41.5 Status of this document

18.11.20013 ABLA documentation extracted from the old INCL4.2/ABLA
chapter. Minor updates to the text.

06.12.2007 Documentation for alpha release added. Pekka Kaitaniemi,
HIP (translation); Alain Boudard, CEA (contact person INCL/ABLA);
Joseph Cugnon, University of Liège (INCL physics modelling); Karl-
Heintz Schmidt, GSI (ABLA); Christelle Schmidt, IPNL (fission code);
Aatos Heikkinen, HIP (project coordination)
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Chapter 42

Low Energy Neutron
Interactions

42.1 Introduction

The neutron transport class library described here simulates the interactions
of neutrons with kinetic energies from thermal energies up to O(20 MeV).
The upper limit is set by the comprehensive evaluated neutron scattering
data libraries that the simulation is based on. The result is a set of sec-
ondary particles that can be passed on to the tracking sub-system for further
geometric tracking within Geant4.

The interactions of neutrons at low energies are split into four parts in
analogy to the other hadronic processes in Geant4. We consider radiative
capture, elastic scattering, fission, and inelastic scattering as separate models.
These models comply with the interface for use with the Geant4 hadronic
processes which enables their transparent use within the Geant4 tool-kit
together with all other Geant4 compliant hadronic shower models.

42.2 Physics and Verification

42.2.1 Inclusive Cross-sections

All cross-section data are taken from the ENDF/B-VI[1] evaluated data li-
brary.

All inclusive cross-sections are treated as point-wise cross-sections for
reasons of performance. For this purpose, the data from the evaluated data
library have been processed, to explicitly include all neutron nuclear reso-
nances in the form of point-like cross-sections rather than in the form of
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parametrisations. The resulting data have been transformed into a linearly
interpolable format, such that the error due to linear interpolation between
adjacent data points is smaller than a few percent.

The inclusive cross-sections comply with the cross-sections data set in-
terface of the Geant4 hadronic design. They are, when registered with the
tool-kit at initialisation, used to select the basic process. In the case of fis-
sion and inelastic scattering, point-wise semi-inclusive cross-sections are also
used in order to decide on the active channel for an individual interaction.
As an example, in the case of fission this could be first, second, third, or
forth chance fission.

42.2.2 Elastic Scattering

The final state of elastic scattering is described by sampling the differen-
tial scattering cross-sections dσ

dΩ
. Two representations are supported for the

normalised differential cross-section for elastic scattering. The first is a tab-
ulation of the differential cross-section, as a function of the cosine of the
scattering angle θ and the kinetic energy E of the incoming neutron.

dσ

dΩ
=

dσ

dΩ
(cos θ, E)

The tabulations used are normalised by σ/(2π) so the integral of the differ-
ential cross-sections over the scattering angle yields unity.

In the second representation, the normalised cross-section are represented
as a series of legendre polynomials Pl(cos θ), and the legendre coefficients al

are tabulated as a function of the incoming energy of the neutron.

2π

σ(E)

dσ

dΩ
(cos θ, E) =

nl
∑

l=0

2l + 1

2
al(E)Pl(cos θ)

Describing the details of the sampling procedures is outside the scope of
this paper.

An example of the result we show in figure 42.1 for the elastic scattering
of 15 MeV neutrons off Uranium a comparison of the simulated angular
distribution of the scattered neutrons with evaluated data. The points are
the evaluated data, the histogram is the Monte Carlo prediction.

In order to provide full test-coverage for the algorithms, similar tests
have been performed for 72Ge, 126Sn, 238U, 4He, and 27Al for a set of neutron
kinetic energies. The agreement is very good for all values of scattering angle
and neutron energy investigated.
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Figure 42.1: Comparison of data and Monte Carlo for the angular distribu-
tion of 15 MeV neutrons scattered elastically off Uranium (238U). The points
are evaluated data, and the histogram is the Monte Carlo prediction. The
lower plot excludes the forward peak, to better show the Frenel structure of
the angular distribution of the scattered neutron.
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42.2.3 Radiative Capture

The final state of radiative capture is described by either photon multiplic-
ities, or photon production cross-sections, and the discrete and continuous
contributions to the photon energy spectra, along with the angular distribu-
tions of the emitted photons.

For the description of the photon multiplicity there are two supported
data representations. It can either be tabulated as a function of the energy
of the incoming neutron for each discrete photon as well as the eventual
continuum contribution, or the full transition probability array is known, and
used to determine the photon yields. If photon production cross-sections are
used, only a tabulated form is supported.

The photon energies Eγ are associated to the multiplicities or the cross-
sections for all discrete photon emissions. For the continuum contribution,
the normalised emission probability f is broken down into a weighted sum
of normalised distributions g.

f (E → Eγ) =
∑

i

pi(E)gi(E → Eγ)

The weights pi are tabulated as a function of the energy E of the incoming
neutron. For each neutron energy, the distributions g are tabulated as a
function of the photon energy. As in the ENDF/B-VI data formats[1], several
interpolation laws are used to minimise the amount of data, and optimise the
descriptive power. All data are derived from evaluated data libraries.

The techniques used to describe and sample the angular distributions are
identical to the case of elastic scattering, with the difference that there is
either a tabulation or a set of legendre coefficients for each photon energy
and continuum distribution.

As an example of the results is shown in figure42.2 the energy distribution
of the emitted photons for the radiative capture of 15 MeV neutrons on
Uranium (238U). Similar comparisons for photon yields, energy and angular
distributions have been performed for capture on 238U, 235U, 23Na, and 14N
for a set of incoming neutron energies. In all cases investigated the agreement
between evaluated data and Monte Carlo is very good.

42.2.4 Fission

For neutron induced fission, we take first chance, second chance, third chance
and forth chance fission into account.

Neutron yields are tabulated as a function of both the incoming and out-
going neutron energy. The neutron angular distributions are either tabulated,
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or represented in terms of an expansion in legendre polynomials, similar to
the angular distributions for neutron elastic scattering. In case no data are
available on the angular distribution, isotropic emission in the centre of mass
system of the collision is assumed.

There are six different possibilities implemented to represent the neu-

Figure 42.2: Comparison of data and Monte Carlo for photon energy distri-
butions for radiative capture of 15 MeV neutrons on Uranium (238U). The
points are evaluated data, the histogram is the Monte Carlo prediction.
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tron energy distributions. The energy distribution of the fission neutrons
f(E → E ′) can be tabulated as a normalised function of the incoming and
outgoing neutron energy, again using the ENDF/B-VI interpolation schemes
to minimise data volume and maximise precision.

The energy distribution can also be represented as a general evaporation
spectrum,

f(E → E ′) = f (E ′/Θ(E)) .

Here E is the energy of the incoming neutron, E ′ is the energy of a fission
neutron, and Θ(E) is effective temperature used to characterise the sec-
ondary neutron energy distribution. Both the effective temperature and the
functional behaviour of the energy distribution are taken from tabulations.

Alternatively energy distribution can be represented as a Maxwell spec-
trum,

f(E → E ′) ∝
√
E ′eE′/Θ(E),

or a evaporation spectrum

f(E → E ′) ∝ E ′eE′/Θ(E).

In both these cases, the temperature is tabulated as a function of the incom-
ing neutron energy.

The last two options are the energy dependent Watt spectrum, and the
Madland Nix spectrum. For the energy dependent Watt spectrum, the energy
distribution is represented as

f(E → E ′) ∝ e−E′/a(E) sinh
√

b(E)E ′.

Here both the parameters a, and b are used from tabulation as function of
the incoming neutron energy. In the case of the Madland Nix spectrum, the
energy distribution is described as

f(E → E ′) =
1

2
[g(E ′, < Kl >) + g(E ′, < Kh >)] .

Here

g(E ′, < K >) =
1

3
√
< K > Θ

[

u
3/2
2 E1(u2) − u

3/2
1 E1(u1) + γ(3/2, u2) − γ(3/2, u1)

]

,

u1(E
′, < K >) =

(
√
E ′ −

√
< K >)2

Θ
, and

u2(E
′, < K >) =

(
√
E ′ +

√
< K >)2

Θ
.
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Here Kl is the kinetic energy of light fragments and Kh the kinetic energy of
heavy fragments, E1(x) is the exponential integral, and γ(x) is the incomplete
gamma function. The mean kinetic energies for light and heavy fragments
are assumed to be energy independent. The temperature Θ is tabulated as
a function of the kinetic energy of the incoming neutron.

Fission photons are describes in analogy to capture photons, where evalu-
ated data are available. The measured nuclear excitation levels and transition
probabilities are used otherwise, if available.

As an example of the results is shown in figure42.3 the energy distribu-
tion of the fission neutrons in third chance fission of 15 MeV neutrons on
Uranium (238U). This distribution contains two evaporation spectra and one
Watt spectrum. Similar comparisons for neutron yields, energy and angular
distributions, and well as fission photon yields, energy and angular distri-
butions have been performed for 238U, 235U, 234U, and 241Am for a set of
incoming neutron energies. In all cases the agreement between evaluated
data and Monte Carlo is very good.

42.2.5 Inelastic Scattering

For inelastic scattering, the currently supported final states are (nA→) nγs
(discrete and continuum), np, nd, nt, n3He, nα, nd2α, nt2α, n2p, n2α, npα,
n3α, 2n, 2np, 2nd, 2nα, 2n2α, nX, 3n, 3np, 3nα, 4n, p, pd, pα, 2p d, dα,
d2α, dt, t, t2α, 3He, α, 2α, and 3α.

The photon distributions are again described as in the case of radiative
capture.

The possibility to describe the angular and energy distributions of the fi-
nal state particles as in the case of fission is maintained, except that normally
only the arbitrary tabulation of secondary energies is applicable.

In addition, we support the possibility to describe the energy angular
correlations explicitly, in analogy with the ENDF/B-VI data formats. In
this case, the production cross-section for reaction product n can be written
as

σn(E,E ′, cos(θ)) = σ(E)Yn(E)p(E,E ′, cos(θ)).

Here Yn(E) is the product multiplicity, σ(E) is the inelastic cross-section,
and p(E,E ′, cos(θ)) is the distribution probability. Azimuthal symmetry is
assumed.

The representations for the distribution probability supported are isotro-
pic emission, discrete two-body kinematics, N-body phase-space distribution,
continuum energy-angle distributions, and continuum angle-energy distribu-
tions in the laboratory system.
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The description of isotropic emission and discrete two-body kinematics is
possible without further information. In the case of N-body phase-space dis-
tribution, tabulated values for the number of particles being treated by the
law, and the total mass of these particles are used. For the continuum energy-
angle distributions, several options for representing the angular dependence
are available. Apart from the already introduced methods of expansion in
terms of legendre polynomials, and tabulation (here in both the incoming
neutron energy, and the secondary energy), the Kalbach-Mann systematic is
available. In the case of the continuum angle-energy distributions in the lab-
oratory system, only the tabulated form in incoming neutron energy, product
energy, and product angle is implemented.

First comparisons for product yields, energy and angular distributions
have been performed for a set of incoming neutron energies, but full test cov-

Figure 42.3: Comparison of data and Monte Carlo for fission neutron energy
distributions for induced fission by 15 MeV neutrons on Uranium (238U).
The curve represents evaluated data and the histogram is the Monte Carlo
prediction.
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erage is still to be achieved. In all cases currently investigated, the agreement
between evaluated data and Monte Carlo is very good.

42.3 High Precision Models and Low Energy

Parameterized Models

The high precision neutron models discussed in the previous section depend
on an evaluated neutron data library (G4NDL) for cross sections, angular
distributions and final state information. However the library is not complete
because there are no data for several key elements. In order to use the high
precision models, users must develop their detectors using only elements
which exist in the library. In order to avoid this difficulty, alternative models
were developed which use the high precision models when data are found in
the library, but use the low energy parameterized neutron models when data
are missing.

The alternative models cover the same types of interaction as the orig-
inals, that is elastic and inelastic scattering, capture and fission. Because
the low energy parameterized part of the models is independent of G4NDL,
results will not be as precise as they would be if the relevant data existed.

42.4 Summary and Important Remark

By the way of abstraction and code reuse we minimised the amount of code
to be written and maintained. The concept of container-sampling lead to
abstraction and encapsulation of data representation and the corresponding
random number generators. The Object Oriented design allows for easy
extension of the cross-section base of the system, and the ENDF-B VI data
evaluations have already been supplemented with evaluated data on nuclear
excitation levels, thus improving the energy spectra of de-excitation photons.
Other established data evaluations have been investigated, and extensions
based on the JENDL[2], CENDL[4], and Brond[5] data libraries are foreseen
for next year.

Followings are important remark of the NeutornHP package. Correlation
between final state particles is not included in tabulated data. The method
described here does not included necessary correlation or phase space con-
strains needed to conserver momentum and energy. Such conservation is not
guarantee either in single event or averaged over many events.
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42.5 Status of this document

00.00.00 created by H.P. Wellisch
08.12.05 section on high precision and low energy parameterized model added
by T. Koi
13.12.05 Important Remark added by T. Koi
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Chapter 43

Radioactive Decay

43.1 The Radioactive Decay Module

G4RadioactiveDecay and associated classes are used to simulate the decay,
either in-flight or at rest, of radioactive nuclei by α, β+, and β− emission
and by electron capture (EC). The simulation model depends on data taken
from the Evaluated Nuclear Structure Data File (ENSDF) [1] which provides
information on:

• nuclear half-lives,

• nuclear level structure for the parent or daughter nuclide,

• decay branching ratios, and

• the energy of the decay process.

If the daughter of a nuclear decay is an excited isomer, its prompt nuclear
de-excitation is treated using the G4PhotoEvaporation class [2].

43.2 Alpha Decay

The final state of alpha decay consists of an α and a recoil nucleus with
(Z − 2, A− 4). The two particles are emitted back-to-back in the center of
mass with the energy of the α taken from the ENSDF data entry for the
decaying isotope.
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43.3 Beta Decay

Beta decay is modeled by the emission of a β− or β+, an anti-neutrino or
neutrino, and a recoil nucleus of either Z+1 or Z−1. The energy of the β is
obtained by sampling either from histogrammed data or from the theoretical
three-body phase space spectral shapes. The latter include allowed, first, sec-
ond and third unique forbidden, and first non-unique forbidden transitions.

The shape of the energy spectrum of the emitted lepton is given by

d2n

dEdpe
= (E0 −Ee)

2EepeF (Z,Ee)S(Z,E0, Ee) (43.1)

where, in units of electron mass, E0 is the endpoint energy of the decay
taken from the ENSDF data, Ee and pe are the emitted electron energy and
momentum, Z is the atomic number, F is the Fermi function and S is the
shape factor.

The Fermi function F accounts for the effect of the Coulomb barrier on
the probability of β± emission. Its relativistic form is

F (Z,Ee) = 2(1 + γ)(2peR)2γ−2e±παZEe/pe
|Γ(γ + iαZEe/pe)|2

Γ(2γ + 1)2
(43.2)

where R is the nuclear radius, γ =
√

1 − (αZ)2, and α is the fine structure
constant. The squared modulus of Γ is computed using approximation B of
Wilkinson [3].

The factor S determines whether or not additional corrections are applied
to the decay spectrum. When S = 1 the decay spectrum takes on the so-
called allowed shape which is just the phase space shape modified by the
Fermi function. For this type of transition the emitted lepton carries no
angular momentum and the nuclear spin and parity do not change. When
the emitted lepton carries angular momentum and nuclear size effects are
not negligible, the factor S is no longer unity and the transitions are called
”forbidden”. Corrections are then made to the spectrum shape which take
into account the energy dependence of the nuclear matrix element. The form
of S used in the spectrum sampling is that of Konopinski [4].

43.4 Electron Capture

Electron capture from the atomic K, L and M shells is simulated by producing
a recoil nucleus of (Z − 1, A) and an electron-neutrino back-to-back in the
center of mass. Since this leaves a vacancy in the electron orbitals, the atomic
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relaxation model (ARM) is triggered in order to produce the resulting x-rays
and Auger electrons. More information on the ARM can be found in the
Electromagnetic section of this manual.

In the electron capture decay mode, internal conversion is also enabled
so that atomic electrons may be ejected when interacting with the nucleus.

43.5 Recoil Nucleus Correction

Due to the level of imprecision of the rest-mass energy of the nuclei generated
by G4IonTable::GetNucleusMass, the mass of the parent nucleus is modified
to a minor extent just before performing the two- or three-body decay so
that the Q for the transition process equals that identified in the ENSDF
data.

43.6 Biasing Methods

By default, sampling of the times of radioactive decay and branching ratios is
done according to standard, analogue Monte Carlo modeling. The user may
switch on one or more of the following variance reduction schemes, which can
provide significant improvement in the modelling efficiency:

1. The decays can be biased to occur more frequently at certain times,
for example, corresponding to times when measurements are taken in a real
experiment. The statistical weights of the daughter nuclides are reduced
according to the probability of survival to the time of the event, t, which is
determined from the decay rate. The decay rate of the nth nuclide in a decay
chain is given by the recursive formulae:

Rn(t) =
n−1
∑

i=1

An:if(t, τi) + An:nf(t, τn) (43.3)

where:

An:i =
τi

τi − τn
An:i ∀i < n (43.4)

An:n = −
n−1
∑

i=1

τn
τi − τn

An:i − yn (43.5)

f(t, τi) =
e
− t
τi

τi

t
∫

− inf

F (t′)e
t′
τi dt′. (43.6)
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The values τi are the mean life-times for the nuclei, yi is the yield of the
ith nucleus, and F (t) is a function identifying the time profile of the source.
The above expression for decay rate is simplified, since it assumes that the
ith nucleus undergoes 100% of the decays to the (i + 1)th nucleus. Similar
expressions which allow for branching and merging of different decay chains
can be found in Ref. [5].

A consequence of the form of equations 43.4 and 43.6 is that the user may
provide a source time profile so that each decay produced as a result of a
simulated source particle incident at time t = 0 is convolved over the source
time profile to derive the actual decay rate for that source function.

This form of variance reduction is only appropriate if the radionuclei can
be considered to be at rest with respect to the geometry when decay occurs.

2. For a given decay mode (α, β+ + EC, or β−) the branching ratios to
the daughter nuclide can be sampled with equal probability, so that some
low probability branches which may have a disproportionately greater effect
on the measurement are sampled with increased probability.

3. Each parent nuclide can be split into a user-defined number of nuclides
(of proportionally lower statistical weight) prior to treating decay in order to
increase the sampling of the effects of the daughter products.

43.7 Status of this document

created by P. Truscott
21.11.03 bibliography added, minor re-wording by D.H. Wright
20.11.12 discussion of new Fermi function and forbidden decays added by
D.H. Wright
20.11.12 sections on alpha and EC decay added by D.H. Wright
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Chapter 44

Introduction

Gamma-nuclear and lepto-nuclear reactions are handled in Geant4 as hybrid
processes which typically require both electromagnetic and hadronic models
for their implementation. While neutrino-induced reactions are not currently
provided, the Geant4 hadronic framework is general enough to include their
future implementation as a hybrid of weak and hadronic models.

The general scheme followed is to factor the full interaction into an elec-
tromagnetic (or weak) vertex, in which a virtual particle is generated, and a
hadronic vertex in which the virtual particle interacts with a target nucleus.
In most cases the hadronic vertex is implemented by an existing Geant4
model which handles the intra-nuclear propagation.

The cross sections for these processes are parameterizations, either di-
rectly of data or of theoretical distributions determined from the integration
of lepton-nucleon cross sections double differential in energy loss and mo-
mentum transfer.

44.1 Status of this document

19.11.12 created by D.H. Wright
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Chapter 45

Cross-sections in Photonuclear
and Electronuclear Reactions

45.1 Approximation of Photonuclear Cross Sec-

tions.

The photonuclear cross sections parameterized in the G4PhotoNuclearCrossSection
class cover all incident photon energies from the hadron production threshold
upward. The parameterization is subdivided into five energy regions, each
corresponding to the physical process that dominates it.

• The Giant Dipole Resonance (GDR) region, depending on the nucleus,
extends from 10 Mev up to 30 MeV. It usually consists of one large
peak, though for some nuclei several peaks appear.

• The “quasi-deuteron” region extends from around 30 MeV up to the
pion threshold and is characterized by small cross sections and a broad,
low peak.

• The ∆ region is characterized by the dominant peak in the cross section
which extends from the pion threshold to 450 MeV.

• The Roper resonance region extends from roughly 450 MeV to 1.2 GeV.
The cross section in this region is not strictly identified with the real
Roper resonance because other processes also occur in this region.

• The Reggeon-Pomeron region extends upward from 1.2 GeV.

In the GEANT4 photonuclear data base there are about 50 nuclei for which
the photonuclear absorption cross sections have been measured in the above
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energy ranges. For low energies this number could be enlarged, because for
heavy nuclei the neutron photoproduction cross section is close to the total
photo-absorption cross section. Currently, however, 14 nuclei are used in the
parameterization: 1H, 2H, 4He, 6Li, 7Li, 9Be, 12C, 16O, 27Al, 40Ca, Cu, Sn,
Pb, and U. The resulting cross section is a function of A and e = log(Eγ),
where Eγ is the energy of the incident photon. This function is the sum of
the components which parameterize each energy region.

The cross section in the GDR region can be described as the sum of two
peaks,

GDR(e) = th(e, b1, s1) · exp(c1 − p1 · e)+ th(e, b2, s2) · exp(c2 − p2 · e). (45.1)

The exponential parameterizes the falling edge of the resonance which be-
haves like a power law in Eγ . This behavior is expected from the CHIPS
model (Chapter Chapter 30), which includes the nonrelativistic phase space
of nucleons to explain evaporation. The function

th(e, b, s) =
1

1 + exp( b−e
s

)
, (45.2)

describes the rising edge of the resonance. It is the nuclear-barrier-reflection
function and behaves like a threshold, cutting off the exponential. The ex-
ponential powers p1 and p2 are

p1 = 1, p2 = 2 for A < 4

p1 = 2, p2 = 4 for 4 ≤ A < 8

p1 = 3, p2 = 6 for 8 ≤ A < 12

p1 = 4, p2 = 8 for A ≥ 12.

The A-dependent parameters bi, ci and si were found for each of the 14 nuclei
listed above and interpolated for other nuclei.

The ∆ isobar region was parameterized as

∆(e, d, f, g, r, q) =
d · th(e, f, g)

1 + r · (e− q)2
, (45.3)

where d is an overall normalization factor. q can be interpreted as the energy
of the ∆ isobar and r can be interpreted as the inverse of the ∆ width. Once
again th is the threshold function. The A-dependence of these parameters is
as follows:
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• d = 0.41 · A (for 1H it is 0.55, for 2H it is 0.88), which means that the
∆ yield is proportional to A;

• f = 5.13− .00075 ·A. exp(f) shows how the pion threshold depends on
A. It is clear that the threshold becomes 140 MeV only for uranium;
for lighter nuclei it is higher.

• g = 0.09 for A ≥ 7 and 0.04 for A < 7;

• q = 5.84− .09
1+.003·A2 , which means that the “mass” of the ∆ isobar moves

to lower energies;

• r = 11.9 − 1.24 · log(A). r is 18.0 for 1H. The inverse width becomes
smaller with A, hence the width increases.

The A-dependence of the f , q and r parameters is due to the ∆+N → N+N
reaction, which can take place in the nuclear medium below the pion thresh-
old.

The quasi-deuteron contribution was parameterized with the same form as
the ∆ contribution but without the threshold function:

QD(e, v, w, u) =
v

1 + w · (e− u)2
. (45.4)

For 1H and 2H the quasi-deuteron contribution is almost zero. For these
nuclei the third baryonic resonance was used instead, so the parameters for
these two nuclei are quite different, but trivial. The parameter values are
given below.

• v = exp(−1.7+a·0.84)
1+exp(7·(2.38−a))

, where a = log(A). This shows that theA-dependence

in the quasi-deuteron region is stronger than A0.84. It is clear from the
denominator that this contribution is very small for light nuclei (up
to 6Li or 7Li). For 1H it is 0.078 and for 2H it is 0.08, so the delta
contribution does not appear to be growing. Its relative contribution
disappears with A.

• u = 3.7 and w = 0.4. The experimental information is not sufficient
to determine an A-dependence for these parameters. For both 1H and
2H u = 6.93 and w = 90, which may indicate contributions from the
∆(1600) and ∆(1620).
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The transition Roper contribution was parameterized using the same form
as the quasi-deuteron contribution:

Tr(e, v, w, u) =
v

1 + w · (e− u)2
. (45.5)

Using a = log(A), the values of the parameters are

• v = exp(−2. + a · 0.84). For 1H it is 0.22 and for 2H it is 0.34.

• u = 6.46 + a · 0.061 (for 1H and for 2H it is 6.57), so the “mass” of the
Roper moves higher with A.

• w = 0.1 + a · 1.65. For 1H it is 20.0 and for 2H it is 15.0).

The Regge-Pomeron contribution was parametrized as follows:

RP (e, h) = h · th(7., 0.2) · (0.0116 · exp(e · 0.16) + 0.4 · exp(−e · 0.2)), (45.6)

where h = A · exp(−a · (0.885+ 0.0048 · a)) and, again, a = log(A). The first
exponential in Eq. 45.6 describes the Pomeron contribution while the second
describes the Regge contribution.

45.2 Electronuclear Cross Sections and Re-

actions

Electronuclear reactions are so closely connected with photonuclear reac-
tions that they are sometimes called “photonuclear” because the one-photon
exchange mechanism dominates in electronuclear reactions. In this sense
electrons can be replaced by a flux of equivalent photons. This is not com-
pletely true, because at high energies the Vector Dominance Model (VDM) or
diffractive mechanisms are possible, but these types of reactions are beyond
the scope of this discussion.

45.3 Common Notation for Different Approaches

to Electronuclear Reactions

The Equivalent Photon Approximation (EPA) was proposed by E. Fermi [1]
and developed by C. Weizsacker and E. Williams [2] and by L. Landau and
E. Lifshitz [3]. The covariant form of the EPA method was developed in Refs.
[4] and [5]. When using this method it is necessary to take into account that
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real photons are always transversely polarized while virtual photons may
be longitudinally polarized. In general the differential cross section of the
electronuclear interaction can be written as

d2σ

dydQ2
=

α

πQ2
(STL · (σT + σL) − SL · σL), (45.7)

where

STL = y
1 − y + y2

2
+ Q2

4E2 − m2
e

Q2 (y2 + Q2

E2 )

y2 + Q2

E2

, (45.8)

SL =
y

2
(1 − 2m2

e

Q2
). (45.9)

The differential cross section of the electronuclear scattering can be rewritten
as

d2σeA

dydQ2
=

αy

πQ2

(

(1 − y
2
)2

y2 + Q2

E2

+
1

4
− m2

e

Q2

)

σγ∗A, (45.10)

where σγ∗A = σγA(ν) for small Q2 and must be approximated as a function of
ǫ, ν, and Q2 for large Q2. Interactions of longitudinal photons are included
in the effective σγ∗A cross section through the ǫ factor, but in the present
GEANT4 method, the cross section of virtual photons is considered to be
ǫ-independent. The electronuclear problem, with respect to the interaction
of virtual photons with nuclei, can thus be split in two. At small Q2 it is
possible to use the σγ(ν) cross section. In the Q2 >> m2

e region it is neces-
sary to calculate the effective σγ∗(ǫ, ν, Q2) cross section.

Following the EPA notation, the differential cross section of electronuclear
scattering can be related to the number of equivalent photons dn = dσ

σγ∗
. For

y << 1 and Q2 < 4m2
e the canonical method [6] leads to the simple result

ydn(y)

dy
= −2α

π
ln(y). (45.11)

In [7] the integration over Q2 for ν2 >> Q2
max ≃ m2

e leads to

ydn(y)

dy
= −α

π

(

1 + (1 − y)2

2
ln(

y2

1 − y
) + (1 − y)

)

. (45.12)

In the y << 1 limit this formula converges to Eq.(45.11). But the correspon-
dence with Eq.(45.11) can be made more explicit if the exact integral

ydn(y)

dy
=
α

π

(

1 + (1 − y)2

2
l1 − (1 − y)l2 −

(2 − y)2

4
l3

)

, (45.13)
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where l1 = ln
(

Q2
max

Q2
min

)

, l2 = 1 − Q2
max

Q2
min

, l3 = ln
(

y2+Q2
max/E2

y2+Q2
min/E2

)

, Q2
min = m2

ey
2

1−y
, is

calculated for

Q2
max(me) =

4m2
e

1 − y
. (45.14)

The factor (1 − y) is used arbitrarily to keep Q2
max(me)

> Q2
min, which can

be considered as a boundary between the low and high Q2 regions. The full
transverse photon flux can be calculated as an integral of Eq.(45.13) with
the maximum possible upper limit

Q2
max(max) = 4E2(1 − y). (45.15)

The full transverse photon flux can be approximated by

ydn(y)

dy
= −2α

π

(

(2 − y)2 + y2

2
ln(γ) − 1

)

, (45.16)

where γ = E
me

. It must be pointed out that neither this approximation nor

Eq.(45.13) works at y ≃ 1; at this point Q2
max(max) becomes smaller than

Q2
min. The formal limit of the method is y < 1 − 1

2γ
.

In Fig. 45.1(a,b) the energy distribution for the equivalent photons is shown.
The low-Q2 photon flux with the upper limit defined by Eq.(45.14)) is com-
pared with the full photon flux. The low-Q2 photon flux is calculated using
Eq.(45.11) (dashed lines) and using Eq.(45.13) (dotted lines). The full pho-
ton flux is calculated using Eq.(45.16) (the solid lines) and using Eq.(45.13)
with the upper limit defined by Eq.(45.15) (dash-dotted lines, which differ
from the solid lines only at ν ≈ Ee). The conclusion is that in order to
calculate either the number of low-Q2 equivalent photons or the total num-
ber of equivalent photons one can use the simple approximations given by
Eq.(45.11) and Eq.(45.16), respectively, instead of using Eq.(45.13), which
cannot be integrated over y analytically. Comparing the low-Q2 photon flux
and the total photon flux it is possible to show that the low-Q2 photon flux is
about half of the the total. From the interaction point of view the decrease of
σγ∗ with increasing Q2 must be taken into account. The cross section reduc-
tion for the virtual photons with large Q2 is governed by two factors. First,
the cross section drops with Q2 as the squared dipole nucleonic form-factor

G2
D(Q2) ≈

(

1 +
Q2

(843 MeV )2

)−2

. (45.17)

Second, all the thresholds of the γA reactions are shifted to higher ν by a
factor Q2

2M
, which is the difference between the K and ν values. Following the
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Figure 45.1: Relative contribution of equivalent photons with small Q2 to
the total “photon flux” for (a) 1 GeV electrons and (b) 10 GeV electrons. In
figures (c) and (d) the equivalent photon distribution dn(ν,Q2) is multiplied
by the photonuclear cross section σγ∗(K,Q2) and integrated over Q2 in two
regions: the dashed lines are integrals over the low-Q2 equivalent photons
(under the dashed line in the first two figures), and the solid lines are integrals
over the high-Q2 equivalent photons (above the dashed lines in the first two
figures).
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method proposed in [8] the σγ∗ at large Q2 can be approximated as

σγ∗ = (1 − x)σγ(K)G2
D(Q2)eb(ǫ,K)·r+c(ǫ,K)·r3

, (45.18)

where r = 1
2
ln(Q2+ν2

K2 ). The ǫ-dependence of the a(ǫ,K) and b(ǫ,K) functions
is weak, so for simplicity the b(K) and c(K) functions are averaged over ǫ.
They can be approximated as

b(K) ≈
(

K

185 MeV

)0.85

, (45.19)

and

c(K) ≈ −
(

K

1390 MeV

)3

. (45.20)

The result of the integration of the photon flux multiplied by the cross sec-
tion approximated by Eq.(45.18) is shown in Fig. 45.1(c,d). The integrated
cross sections are shown separately for the low-Q2 region (Q2 < Q2

max(me)
,

dashed lines) and for the high-Q2 region (Q2 > Q2
max(me)

, solid lines). These

functions must be integrated over ln(ν), so it is clear that because of the
Giant Dipole Resonance contribution, the low-Q2 part covers more than half
the total eA → hadrons cross section. But at ν > 200 MeV , where the
hadron multiplicity increases, the large Q2 part dominates. In this sense, for
a better simulation of the production of hadrons by electrons, it is necessary
to simulate the high-Q2 part as well as the low-Q2 part.

Taking into account the contribution of high-Q2 photons it is possible to use
Eq.(45.16) with the over-estimated σγ∗A = σγA(ν) cross section. The slightly
over-estimated electronuclear cross section is

σ∗
eA = (2ln(γ) − 1) · J1 −

ln(γ)

Ee

(

2J2 −
J3

Ee

)

. (45.21)

where

J1(Ee) =
α

π

∫ Ee

σγA(ν)dln(ν) (45.22)

J2(Ee) =
α

π

∫ Ee

νσγA(ν)dln(ν), (45.23)

and

J3(Ee) =
α

π

∫ Ee

ν2σγA(ν)dln(ν). (45.24)
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The equivalent photon energy ν = yE can be obtained for a particular ran-
dom number R from the equation

R =
(2ln(γ) − 1)J1(ν) − ln(γ)

Ee
(2J2(ν) − J3(ν)

Ee
)

(2ln(γ) − 1)J1(Ee) − ln(γ)
Ee

(2J2(Ee) − J3(Ee)
Ee

)
. (45.25)

Eq.(45.13) is too complicated for the randomization of Q2 but there is an
easily randomized formula which approximates Eq.(45.13) above the hadronic
threshold (E > 10 MeV ). It reads

π

αD(y)

∫ Q2

Q2
min

ydn(y,Q2)

dydQ2
dQ2 = −L(y,Q2) − U(y), (45.26)

where

D(y) = 1 − y +
y2

2
, (45.27)

L(y,Q2) = ln

(

F (y) + (eP (y) − 1 +
Q2

Q2
min

)−1

)

, (45.28)

and

U(y) = P (y) ·
(

1 − Q2
min

Q2
max

)

, (45.29)

with

F (y) =
(2 − y)(2 − 2y)

y2
· Q

2
min

Q2
max

(45.30)

and

P (y) =
1 − y

D(y)
. (45.31)

The Q2 value can then be calculated as

Q2

Q2
min

= 1 − eP (y) +
(

eR·L(y,Q2
max)−(1−R)·U(y) − F (y)

)−1

, (45.32)

where R is a random number. In Fig. 45.2, Eq.(45.13) (solid curve) is com-
pared to Eq.(45.26) (dashed curve). Because the two curves are almost in-
distinguishable in the figure, this can be used as an illustration of the Q2

spectrum of virtual photons, which is the derivative of these curves. An al-
ternative approach is to use Eq.(45.13) for the randomization with a three
dimensional table ydn

dy
(Q2, y, Ee).

After the ν and Q2 values have been found, the value of σγ∗A(ν,Q2) is cal-
culated using Eq.(45.18). If R · σγA(ν) > σγ∗A(ν,Q2), no interaction occurs
and the electron keeps going. This “do nothing” process has low probability
and cannot shadow other processes.
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Figure 45.2: Integrals of Q2 spectra of virtual photons for three energies
10 MeV , 100 MeV , and 1 GeV at y = 0.001, y = 0.5, and y = 0.95.
The solid line corresponds to Eq.(45.13) and the dashed line (which almost
everywhere coincides with the solid line) corresponds to Eq.(45.13).
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45.4 Status of this document

created by H.P. Wellisch and M. Kossov
20.05.02 re-written by D.H. Wright
01.12.02 expanded section on electronuclear cross sections - H.P. Wellisch
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Chapter 46

Gamma-nuclear Interactions

46.1 Process and Cross Section

Gamma-nuclear reactions in Geant4 are handled by the class G4PhotoNuclearProcess.
The default cross section class for this process is G4PhotoNuclearCrossSection,
which was described in detail in the previous chapter.

46.2 Final State Generation

Final state generation proceeds by two different models, one for incident
gamma energies of a few GeV and below, and one for high energies. For
high energy gammas, the QGSP model is used. Indicent gammas are treated
as QCD strings which collide with nucleons in the nucleus, forming more
strings which later hadronize to produce secondaries. In this particular model
the remnant nucleus is de-excited using the Geant4 precompound and de-
excitation sub-models.

At lower incident energies, there are two models to choose from. The
Bertini-style cascade (G4CascadeInterface interacts the incoming gamma
with nucleons using measured partial cross sections to decide the final state
multiplicity and particle types. Secondaries produced in this initial interac-
tion are then propagated through the nucleus so that they may react with
other nucleons before exiting the nucleus. The remnant nucleus is then de-
excited to produce low energy fragments. Details of this model are provided
in another chapter in this manual.

An alternate handling of low energy gamma interactions is provided by
G4GammaNuclearReaction, which uses the Chiral Invariant Phase Space
model (CHIPS, Chapter 30). Here the incoming gamma is absorbed into
a nucleon or cluster of nucleons within the target nucleus. This forms an
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excited bag of partons which later fuse to form final state hadrons. Parton
fusion continues until there are none left, at which point the final nuclear
evaporation stage is invoked to bring the nucleus to its ground state.

46.3 Status of this document

19.11.12 created by D.H. Wright

600



Chapter 47

Electro-nuclear Interactions

47.1 Process and Cross Section

Electro-nuclear reactions in Geant4 are handled by the classes G4ElectronNuclearProcess
and G4PositronNuclearProcess. The default cross section class for both these
processes is G4ElectroNuclearCrossSection which was described in detail in
an earlier chapter.

47.2 Final State Generation

Final state generation proceeds in two steps. In the first step the electro-
magnetic vertex of the electron/positron-nucleus reaction is calculated. Here
the virtual photon spectrum is generated by sampling parameterized Q2 and
ν distributions. The equivalent photon method is used to get a real photon
from this distribution.

In the second step, the real photon is interacted with the target nucleus
at the hadronic vertex, assuming the photon can be treated as a hadron.
Photons with energies below 10 GeV can be interacted directly with nucleons
in the target nucleus using the measured (γ, p) partial cross sections to decide
the final state multiplicity and particle types. This is currently done by the
Bertini-style cascade (G4CascadeInterface). Photons with energies above
10 GeV are converted to π0s and then allowed to interact with nucleons
using the FTFP model. In this model the hadrons are treated as QCD
strings which collide with nucleons in the nucleus, forming more strings which
later hadronize to produce secondaries. In this particular model the remnant
nucleus is de-excited using the Geant4 precompound and de-excitation sub-
models.

This two-step process is implemented in the G4ElectroVDNuclearModel.
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An alternative model is the CHIPS-based G4ElectroNuclearReaction (Chap-
ter 30). This model also uses the equivalent photon approximation in which
the incoming electron or positron generates a virtual photon at the electro-
magnetic vertex, and the virtual photon is converted to a real photon before
it interacts with the nucleus. The real photon interacts with the hadrons in
the target using the CHIPS model in which quasmons (generalized excited
hadrons) are produced and then decay into final state hadrons. Electrons
and positrons of all energies can be handled by this single model.

47.3 Status of this document

19.11.12 created by D.H. Wright
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Chapter 48

Muon-nuclear Interactions

48.1 Process and Cross Section

Muon-nuclear reactions in Geant4 are handled by the class G4MuonNuclearProcess.
The default cross section class for this process is G4KokoulinMuonNuclearXS,
the details of which are discussed in section 13.4.

48.2 Final State Generation

Just as for the electro-nuclear models, the final state generation for the muon-
nuclear reactions proceeds in two steps. In the first step the electromagnetic
vertex of the muon-nucleus reaction is calculated. Here the virtual photon
spectrum is generated by sampling parameterized momentum transfer (Q2)
and energy transfer (ν) distributions. In this case the same equations used
to generate the process cross section are used to sample Q2 and ν. The
equivalent photon method is then used to get a real photon.

In the second step, the real photon is interacted with the target nucleus
at the hadronic vertex, assuming the photon can be treated as a hadron.
Photons with energies below 10 GeV can be interacted directly with nucleons
in the target nucleus using the measured (γ, p) partial cross sections to decide
the final state multiplicity and particle types. This is currently done by the
Bertini-style cascade (G4CascadeInterface). Photons with energies above
10 GeV are converted to π0s and then allowed to interact with nucleons
using the FTFP model. In this model the hadrons are treated as QCD
strings which collide with nucleons in the nucleus, forming more strings which
later hadronize to produce secondaries. In this particular model the remnant
nucleus is de-excited using the Geant4 precompound and de-excitation sub-
models.
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This two-step process is implemented in the G4MuonVDNuclearModel.

48.3 Status of this document

19.11.12 created by D.H. Wright
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